next up previous contents
Next: Portability Today Up: The Linux Edge Previous: GCC

Kernel Modules

With the Linux kernel it became clear very quickly that we want to have a system which is as modular as possible. The open-source development model really requires this, because otherwise you can't easily have people working in parallel. It's too painful when you have people working on the same part of the kernel and they clash.

Without modularity I would have to check every file that changed, which would be a lot, to make sure nothing was changed that would effect anything else. With modularity, when someone sends me patches to do a new filesystem and I don't necessarily trust the patches per se, I can still trust the fact that if nobody's using this filesystem, it's not going to impact anything else.

For example, Hans Reiser is working on a new filesystem, and he just got it working. I don't think it's worth trying to get into the 2.2 kernel at this point. But because of the modularity of the kernel I could if I really wanted to, and it wouldn't be too difficult. The key is to keep people from stepping on each other's toes.

With the 2.0 kernel Linux really grew up a lot. This was the point that we added loadable kernel modules. This obviously improved modularity by making an explicit structure for writing modules. Programmers could work on different modules without risk of interference. I could keep control over what was written into the kernel proper. So once again managing people and managing code led to the same design decision. To keep the number of people working on Linux coordinated, we needed something like kernel modules. But from a design point of view, it was also the right thing to do.

The other part of modularity is less obvious, and more problematic. This is the run-time loading part, which everyone agrees is a good thing, but leads to new problems. The first problem is technical, but technical problems are (almost) always the easiest to solve. The more important problem is the non-technical issues. For example, at which point is a module a derived work of Linux, and therefore under the GPL?

When the first module interface was done, there were people that had written drivers for SCO, and they weren't willing to release the source, as required by the GPL, but they were willing to recompile to provide binaries for Linux. At that point, for moral reasons, I decided I couldn't apply the GPL in this kind of situation.

The GPL requires that works ``derived from'' a work licensed under the GPL also be licensed under the GPL. Unfortunately what counts as a derived work can be a bit vague. As soon as you try to draw the line at derived works, the problem immediately becomes one of where do you draw the line?

We ended up deciding (or maybe I ended up decreeing) that system calls would not be considered to be linking against the kernel. That is, any program running on top of Linux would not be considered covered by the GPL. This decision was made very early on and I even added a special read-me file (see Appendix B) to make sure everyone knew about it. Because of this commercial vendors can write programs for Linux without having to worry about the GPL.

The result for module makers was that you could write a proprietary module if you only used the normal interface for loading. This is still a gray area of the kernel though. These gray areas leave holes for people to take advantage of things, perhaps, and it's partly because the GPL really isn't clear about things like module interface. If anyone were to abuse the guidelines by using the exported symbols in such a way that they are doing it just to circumvent the GPL, then I feel there would be a case for suing that person. But I don't think anyone wants to misuse the kernel; those who have shown commercial interest in the kernel have done so because they are interested in the benefits of the development model.

The power of Linux is as much about the community of cooperation behind it as the code itself. If Linux were hijacked -- if someone attempted to make and distribute a proprietary version -- the appeal of Linux, which is essentially the open-source development model, would be lost for that proprietary version.

next up previous contents
Next: Portability Today Up: The Linux Edge Previous: GCC

Download this document: [src.tar.gz][ps.gz][html.tar.gz][dvi.gz]

Open Resources (
Last updated: 1999-08-06