
Howto use PGP

Pieter de Boer

October 22, 2004

1 Preface

In this document I will describe the procedure of generating a PGP key
and using the key for signing and encrypting messages. By following this
document, a reader should be able to set up his or her own PGP key pair,
publish it on the internet and use it for verification, signing and encrypting
purposes.

2 PGP software installation

There are several PGP implementations to be found. One of them is the
GnuPG system, an open source, GPL licensed implementation of the OpenPGP
standard. I’ll be using GnuPG throughout this article.

Many systems already come shipped with GnuPG, but some do not.
Based on your Operating System and — in case of Linux — distribution
thereof, you may have to install GnuPG yourself. Installing GnuPG on my
laptop proved to be an easy task. On Debian Linux GnuPG can be installed
with:

apt-get install gnupg

To check if your installation was succesful, run:

gpg -h

If GnuPG was successfully installed, a list of options should be displayed.

3 Generating a keypair

Before you generate a keypair, gpg first needs to create the /.gnupg direc-
tory, /.gnupg/gpg.conf, /.gnupg/secring.pgp and /.gnupg/pubring.pgp.
You can let gpg take care of this by simply issueing the command “gpg”,
followed with a ˆC, to stop the tool. Gpg will create the directory and files
for you.

1



After the directory and files are built, generating a keypair is as easy as
running the following command:

gpg --gen-key

You will be asked a few questions, which you will need to answer according
to your needs. I have chosen to use the default key types DSA and ElGamal.
The DSA key was 1024 bits big, I configured the ELG-E key to be 2048 bits
big, the highest suggested keysize. If you want your key to expire after a
certain amount of time, you can tell the program to do so. After filling in
these options, you have to configure the visible parts of your key, being your
name, an e-mail address, and if you want, a comment describing the key. If
your personal information is configured, the program asks for a passphrase.
The passphrase is needed to access your private key, so it is vitally important
that your passphrase is a strong one. After providing the passphrase, gpg
will generate the keypair.

4 Publishing the public key

To be able to use the keys for your communication, the public key needs
to be published to PGP servers on the internet. First, you will have to edit
your /.gnupg/gpg.conf file and add some servers gpg will use. I added the
following lines to my configuration:

keyserver ldap://certserver.pgp.com
keyserver http://pgpkeys.mit.edu:11371
keyserver ldap://keyserver.pgp.com
keyserver ldap://europe.keys.pgp.com:11370
keyserver hkp://subkeys.pgp.net

Now you’re ready to publish your key. This can be done by using the
–send-keys option to gpg. It needs an argument: your e-mail address. I
used the following command:

gpg --send-keys pieter@os3.nl

The program will give notice if anything goes wrong.

5 Signing a file

Signing a file is very easy, if you’ve remembered your passphrase, at least.
Without your passphrase PGP is useless, so you have to make sure you re-
member it. To sign a text file with a cleartext key, use the –clearsign option.
This option needs the file to sign as argument and will create a signed copy
of the file you want to sign, with .asc appended to the filename. Let’s say
you want to sign the file “mail.txt”. The following command could be used
to do just that:

2



gpg --clearsign mail.txt

This command will create a cleartext signed file “mail.txt.asc”, which has
the original text inside, with a PGP signature added to it.

6 Verifying a signature

Verifying a signature is even easier than signing a file. Let’s continue using
the example above. Since you signed the file yourself, a verify should result
in a good signature. To verify a signature, use the –verify option, using
the signed file as argument. If you have a file with a so-called ’detached
signature’, which means that the signature is in a seperate file, then use the
signature file and then the signed file as arguments to the –verify option.
An example:

$ gpg --verify mail.txt.asc
gpg: Signature made Fri Oct 22 16:14:55 2004 CEST using DSA key ID B1FC47B4
gpg: Good signature from "Pieter de Boer <pieter@os3.nl>"

As you can see, the signature is said to be good, so this file really was signed
by me.

7 Encrypting a file

Encrypting a file can be done using the -e option. If the -a option is used
too, a 7 bits ascii file is created. Without that option the encrypted file will
be 8 bits ascii. You will need to use 7 bits ascii to send the encrypted file
using e-mail. Use the -r option to select the user you want to send the file
to. Let’s say I wanted to send myself an encrypted e-mail. I could use the
following command:

gpg -a -r pieter@os3.nl -e mail.txt

A new file, called “mail.txt.asc” will be created, containing the encrypted
message.

8 Decrypting a file

Decrypting can be done by using the -d option. It needs one argument,
the file to decrypt. Continueing on the above example, to decrypt the file
“mail.txt.asc”, simply issue this command:

gpg -d mail.txt.asc

Again, gpg will ask for your passphrase, since it needs to unlock your private
key to decrypt the message. If you have given the right passphrase, the
decrypted message will be shown on stdout.

3



9 Editing keys

Now that we are able to sign, verify, encrypt and decrypt messages, it’s time
to learn about trusting keys. Trusting somebody’s public key means that
you have verified with that person, over a trusted medium, such as oral con-
versation, that indeed that key belongs to said person. The options –edit-key
can be used to do all kinds of operations on a key, including your own. Let’s
say you have the key of a friend, with e-mail address john@example.com.
First, edit the key you have using:

gpg --edit-key john@example.com

Now issue the command “trust”. A simple menu will be shown, asking you
to tell how trusted the key really is. The first option is “Don’t know”, the
last “I trust ultimately”. If you have verified that the key is correct, you can
ultimately trust the key, using option 5. Next time you receive an encrypted
or signed message from john@example.com and the key is correct, gpg will
not only tell you that it’s correct, it will also tell you that it’s trusted.

One way to help build a web of trust, is by signing other people’s keys
with your own. This way, people who trust your key, can automatically trust
the keys of people you trust. For example, if you sign john@example.com’s
key, anyone trusting your key can then trust his too. In the –edit-key screen,
use the command sign. After signing the key, you will have to send it to the
keyservers too, otherwise it won’t be publicly known you trust that certain
key. You can use the –send-key option used before to do that.

10 Conclusion

Using this howto, anyone should be able to create a PGP key pair using the
GnuPG implementation of the OpenPGP standard, use it to sign, verify,
encrypt and decrypt files and help the community by adding trust relations
to the PGP web of trust.

4


