Dwarf's Guide to Debian GNU /Linux

2001 Dale Scheetz

Dwarf’s Guide to Debian GNU/Linux
Copyright (©) 2001 Dale Scheetz

Permission is granted to copy, distribute and/or modlfy this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with
the Invariant Sections belng Chapter 1 Introduction, with no Front-Cover Texts, and with the Back- Cover
Texts being “The early development of the material in this work was produced With the financial support
of Planet Linux. This support was intrumental in bringing this project to completion.” A copy of the
license is included in the section entitled “Appendix 9: GNU Free Documentation License” which can be
found on page 271.

Trademark Acknowledgements

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. The
publisher cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting
the validity of any trademark or service mark.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.
CP/M is a registered trademark of Caldera, Inc.

IBM is a registered trademark of International Business Machines, Inc.
MS is a trademark of Microsoft Corporation.

Windows is a trademark of Microsoft Corporation.

X Window System is a registered trademark of X Consortium, Inc.

11

dedicated
to

Linux users everywhere

11

CREDITS

First I want to thank Tan Murdock for writing the History section. His per-
spectives on those early years have helped latecomers like Dwarf understand
the founding principles upon which Debian is based.

While Dwarf wrote much of the remainder of the book from his own experience,
his fellow developers have always been willing to help resolve his ignorance.
Without the fabulous mind-share of the development community, this book

could never have been written.

This release includes graphic snapshots of the actual screens presented by the
current installation. These shots could not have been taken without the use
of VMware™ Workstation software. VMware’s support of this free software
effort has included the donation of license to use it’s MultipleWorlds™ tech-
nology without fee. Dwarf is grateful for the quality of the presentation these
screen shots bring to this book, and wishes to thank VMware for all their help
in making this possible.

Dwarf also wishes to thank Peter S Galbraith for making this book available as
the Debian package dwarfs-debian-guide, and Anthony Fok for his patches
to the layout, and for catching several typos.

v

Typography

Bold

Bold type face is used to identify words that are name or titles, such as the
names of headings on a display, the names of file formats or protocols, and
even program names when the usage is pointedly the name and not the use or

function of the program.

Italic

Italic type face is used to identify files, directories, and programs that reside

on a file system, as well as their use in commands.

The note Style

Note: This style is used to deliver auxiliary information about the
subject under discussion. Most often this is information that
the reader may or may not understand, and is considers op-
tional reading.

The screen Style

This style presents text
that might be displayed
on the screen of your computer.

vi

Contents

1 Introduction 15
About the Author 15

A Short History of Debian 17
The Debian Development Team 19
What Makes Debian Different? 21
What is in this book?o 24

2 Package Management Tools 27
Introduction oo 27
dpkg 30
Introduction 30
Running dpkgo 32
Options Recognized by dpkg 33
Installation and Removal Options 33

Available Packages File Management Options 37

Package System Information Options 39

Vil

Force Options 45

Miscellaneous Options 46

dselect 47
Introduction o 47
Using dselecto 48

0. [Alecess oo 48

L. [Ulpdate 54

2. [Slelect 55

3. [Mmstall oo 58

4. [Clonfig 58

5. [Rlemoveo 59

6. [Quit 59

Upgrading with dselect 60
apt-get L 62
Introduction 62
Selecting Archives oL 62
Updating Packages Files 64
Installing Packages 65
Upgrading Packages 66
Removing packageso 66

3 Installation 67
Introductiono 67

Quick Start 69

Before You Begin 72
Boot Media 72
Partitioning the Hard Drive 73
The Swap Partition 74
The root partitions L. 75

Example #1: Simple partitioning 7
Example #2: Complex partitioning 7
Networking Information Sources 78
Preliminary Networking Information 80
PPP Configuration Information 84
What You Need to Know: 84

Stage One: The Base Installation 86
Task 1: Configure the Keyboard 88
Task 2: Partition the Hard Disk 90
Task 3: Swap Partition 95
Task 4: Initializing Linux Partitions 97
Task 5: Install Kernel and Modules 100
Task 6: Configuring Driver Modules 104
Task 7: Configure the Network 108
Task 8: Installing the Base System 117
Task 9: Configuring the Base System 119

1X

Task 10: Creating a Bootable System 122

Task 11: Finish Stage One 126
Stage Two: Package Installation 127
General Configuration 128
PPP Configuration 139
Configuring Apt L 156
System Configuration 160

The Debian Task Installer 161

X Configuration using anXious 163

Apt Package Installation 185

4 Basic System Administration 189
Introduction 189
Managing many accountso 190
Addingawuser 190
Removing auser L 191
Managing passwords 192
Managing Root Access 194
SU o v e 194
sudo ... 195

File Protection by Owner 196
File Protection by Group 197
Mounting and Unmounting File Systems 199

X

Monitoring System Activity 200

Process Status 200
top CPU Processes, 200
fuser: Who has it? oL 201
Who is logged on?o 202
Where is the printer? L. 202
Finding knowledge oo 204
Additional info oo 205
Finding packages oo 206
Searching the file systemo 207
Building a Custom Kernel 208
Hardware 208
Building the Kernel 00 209
Non-Debian Kernel Construction 209
Debian Kernel Construction 215
Modules 217
Advantages 217
Disadvantage 219
Appendix 223
Appendix 1: Common UNIX Commands 224
Introduction 224
chgrp o 225

chown 228
CD + v o e e 229
df . . 230
du ..o 231
Is o o 232
mkdir ... 234
IV . 0 e e e e 235
50 0 236
rmdir . .. 237
Appendix 2: Text Editors 0oL 238
Introduction oo 238
2 239
JOE e 240
Vi 241
EINACS © « v v e e e e e e e e e e 242
Appendix 3: The Loop Device 243
Appendix 4: Multiple OS Installation 246
Appendix 5: Building Packages Files 248
Appendix 6: Linux as a Server 250
Appendix 7: Argumentso 252
SCSI device arguments L 254

xii

SCSI argument list 255

Hard Disk Arguments 258
Other CD-ROMS 260
Floppy Drive Arguments 262
Other Device Drivers 266
Appendix 8: What is Free Software 267
Appendix 9: GNU Free Documentation License 271
GNU Free Documentation License 271
Applicability and Definitions 272

Verbatim Copying 273

Copying in Quantity 274
Modificationso 275

Combining Documents 278

Collections of Documents 278
Aggregation With Independent Works 279

Translationo 279
Termination 280

Future Revisions of This License. 280

Index 282

Xlil

Xiv

Chapter 1

Introduction

About the Author

As Dwarf, the author began traveling the Information Super-highway in the
early 1990’s. Several years later he discovered Linux, when someone gave him
a copy of the first edition of The Linux Journal. He purchased a CD from
one of the adds in that magazine, and after only 3 or 4 tries, was successful
installing Slackware on a PC that had previously only run DOS. He was almost
immediately disappointed because many of the source packages that he was
able to download off the net would not build because some library, or utility,
appeared to be missing from the system. Being barely able to manage make
provided none of the skills needed to resolve the problem. As Dwarf later
discovered, the reason for these failures came from the nonstandard locations
for libraries and utilities in a Slackware system. With that knowledge it is
a pretty simple matter to edit the make file so the libraries can be success-
fully found. Lack of this knowledge forced Dwarf to try another distribution.
Software Landing Systems (SLS) was installed next, and it did a much better
job of supplying everything necessary to build packages directly off the net.

15

16 Introduction

In fact, Dwarf used this system for all his network activities until he lost his
computer to lightning two years later.

Once a new machine arrived a decision had to be made. Although the SLS
system had been more successful than Slackware, the success rate was still
down around 3 successes for every 4 attempts. Searching the various CDs in his
growing collection, Dwarf discovered Debian. Although the release available
on that CD had no PPP support, what was provided was much more successful
at building the collected source files than either of the previous distributions!
Finding the debian-devel mailing list and upgrading his system to a version of
Debian with PPP support got Dwarf working as a developer, and he has been
working with Debian ever since.

After that short history of the author, a short history of Debian seems to be
in order. The following was provided by Ian Murdock, the creator of Debian:

A Short History of Debian

In late 1993, a college student and computer enthusiast named Ian Murdock
was using SLS, an early distribution of Linux. He liked Linux but found himself
disappointed that SLS had many problems and that, even worse, new releases
of it failed to fix many of them. Convinced that this was mostly due to an
overloaded, overworked maintainer, he decided to adapt the model used in
the development of Linux itself and use it to create a new distribution with a
decidedly different philosophy. He called the new distribution “Debian Linux”,
and it was to be developed by a distributed group of volunteers. This group

was completely open and anyone was welcome to get involved.

Ian posted his intentions to the Usenet in August of 1993 and immediately
found outside interest in his idea, including that of the Free Software Founda-
tion, the creators of much of the core software of all Linux-based systems. Ian
credits this early interest as being pivotal to the acceptance of Debian into the

free software world.

Through the fall and winter of 1993, development of Debian proceeded through
several internal releases, culminating in the public release of Debian 0.91 in
January of 1994. Debian 0.91 gave the world its first glimpse of the Debian
philosophy in action. By this time, a dozen or so people were involved in de-
velopment, though Tan was still largely packaging and integrating the releases
himself.

17

18 Introduction

After the first public release of Debian, attention was turned toward developing
the package system called dpkg. A rudimentary dpkg existed in Debian 0.91,
but at that time was mostly used for manipulating packages once they were
installed, rather than as a general packaging utility. By the summer of 1994,
early versions of dpkg were becoming usable, and other people besides Ian
began to join in the packaging and integration process by following guidelines
that explained how to construct packages that were modular and integrated
into the system without causing problems.

By the fall of 1994, an overloaded Ian Murdock, now coordinating the efforts
of dozens of people in addition to his own development work, transferred re-
sponsibility of the package system to lan Jackson, who proceeded to make
many invaluable enhancements, and shaped it into the current system.

After months of hard work and organization, the Debian Project finally made
its first distributed release in March of 1995, Debian 0.93 Release 5. Debian
0.92 had never been released, and Release 1 through Release 4 of Debian 0.93
had been development releases made throughout the fall and winter of 1994.

By this time, the Debian Project, as it had come to be called, had grown to
include over sixty people. In the summer of 1995, Tan Murdock transferred
responsibility of the base system, the core set of Debian packages, to Bruce
Perens, giving lan time to devote to the management of the growing Project.
Work continued throughout the summer and fall, and a final a.out binary
format release, Debian 0.93 Release 6, was made in November of 1995 before
attention turned to converting the system to the ELF binary format.

[an Murdock left the Debian Project in March of 1996 to devote more time to
his family and to finishing school; Bruce Perens assumed the leadership role,
guiding the Project through its first ELF release, Debian 1.1, in June 1996.

The Debian Development Team

From its humble beginnings, with a mere handful of developers, the Debian
Development Team has grown to nearly 400 active developers and enough
additional help from regular contributors to bring the total list of participants
to over 600 people. Most of these people have never physically met each
other. Almost all of the communication between developers takes place via
e-mail using the various mailing lists that the project supports through donor

supplied hardware and bandwidth.

All contributions to the project are completely voluntary, including the many
fine people, businesses, and institutions that contribute hardware to operate
those lists and disk space to store the archives. What little actual cash is
necessary, has in the past been paid out of pocket by the person taking care
of the issue. Software in the Public Interest now provides services that
allow for the project to collect donations for such cash necessities. This vol-
unteer organization, by its very nature, does not lend itself to the hierarchical
structures usually found in development organizations. Control from a central
location is ineffective, at best, and counterproductive in many cases. The rea-
son this process works without those controls stems from the modular package
scheme that was developed so early in the project. This allows an individual
developer to take responsibility for a “known” piece of the distribution. The
efforts of this diverse group are directed by the bug tracking system, and the
set of Policy documents that define the construction of Debian packages, and
to some extent by the Debian Project Leader.

The combination of mailing lists and bug reporting system provides the only
checks and balances needed to adequately control each individual developer.
If developers have any questions about the proper way to deal with package
responsibilities, the mailing list provides the access to other developers who
will gladly assist them with suggestions and comments. If developers generate

packages which are poorly formed, the bug tracking system allows anyone
19

20 Introduction

who notices the problem to bring it to their attention. With the recent rapid
growth of the development group, this system became inadequate for dealing
with the problems brought on by that rapid growth. This need has created
multiple small teams within the larger structure, whose specific task has some
narrowly focused agenda. Some of the current agendas include: Publicity;
Documentation; Quality Assurance; and Testing.

These subgroups operate on the same general principles as the larger group,
usually with their own mailing list and a team leader. These teams have a
far better chance of coming to closure on the issues that they deal with, than
the larger group was ever able to accomplish. Within this loose structure, the
driving forces come from the universal desire of all participants to create an
exceptional product of the highest possible quality. This helps to quell personal
agendas and keep people focused on the general goals. It is this development
model, borrowed from the Kernel Development Team and modified to suit the
needs of the Debian team, that has allowed Debian to become the powerful
distribution that it is today.

What Makes Debian Different?

The major difference between the Debian distribution and other Linux distri-
butions that are currently available is its open development model. This is
not, however, the only difference between Debian and the other distributions.

The second, equally important difference, is Debian’s strict adherence to the
“Free Software” ideal. It is quite impressive, when you think about it, that
this distribution is composed of freely redistributable software, complete with
source code. Now, most other distributions also supply source code and these
same programs, but they will also put packages into their distributions that
can not be redistributed under certain conditions, without any concern for
the legal problems that they deliver to their customer. Users of the Debian
distribution can be assured that what they find in that distribution will have no
constraints on the free distribution and modification of that software, leaving
them free to build “value added” systems from this Distribution without fear
that they will find themselves in court for misuse of someone else’s intellectual

property.
Debian provides areas within the archives for packages that do not meet these
rigid standards, but are desired by the Debian community. Because of its free

software status, the Debian packaging system can be used to package software
that does not meet its own standards for free distribution.

Packages that are not freely distributable are found in the non-free section
of the distribution. An additional category, called contrib is for those pack-
ages that would otherwise be free, except that they depend on some other
package that is non-free. In this way, Debian provides a wide variety of soft-
ware outside the distribution, in a way that protects its users from the legal
ramifications of the non-free nature of that software.

There are substantial technical issues that separate Debian from the other
distributions available today. Debian is dedicated to a strict interpretation

21

22 Introduction

of the Linux File System Standards, soon to be known as simply the File
Hierarchy Standards. It is this strict adherence to these technical guidelines
that helps make Debian such a dependably useful system. Foreign packages
brought to a Debian system are typically easier to integrate into the system
than with other Linux distributions.

As important as this standard is, the real technical superiority provided by
Debian is its unique packaging system. This system allows for incremental
upgrades of individual packages without the constant danger of ending up
with a broken system. The modularity of the packaging system keeps each
potential disaster localized within the narrow confines of the offending package.
There are still plenty of ways to break the system, but the packaging system
goes a long way toward protecting the system from such failures. Most of
this protection comes from the dependency checking that is provided by this
packaging system. Packages can declare their dependency on other packages
and even declare that dependency to encompass a particular version of that
other package. The installation software enforces these dependencies in a way
that forces the dependencies to be satisfied before installation proceeds. This
yields a functional package at the end of the installation, instead of one that
will not operate for some strange reason.

Even with Debian’s high quality, the complexity of Linux systems provides
many ways to confuse the unwary user. Although Debian attempts to create
an installation default that will fit the most general needs of the user, there are
many areas where knowledge and skill are required to get the most value from
this operating system. Debian provides for these needs with mailing lists. The
debian-user mailing list is an open subscription list. To subscribe you simply
send an e-mail message to:

debian-user-REQUEST@lists.debian.org

with the subject and message body containing the single word subscribe.
This will bring you into contact with other users, potentially having had your

What Makes Debian Different? 23

problem in the past, who can help reduce your confusion. The strength of this
list is that developers lurk on the list as well as users, so there is the possibility
of getting expert advice from someone who understands your problem.

In addition, the debian-devel mailing list is also open to public subscription.
Although its goals are far more technical in nature, much useful information
can be gleaned from lurking on this list. As with the user list, a simple e-mail
to:

debian-devel-REQUEST@lists.debian.org

with the subscribe statement in the subject line will result in mail from
this list being sent to your e-mail address. The volume of these lists is quite
high at times, which tends to scare folks away who are new to the Internet,
but the quality of response is usually quite high. This is in stark contrast
to other distributions, many of which don’t even supply any e-mail address
for questions. Those which do manage user mailing lists tend to be more
closed and less helpful to the average user. Much of the difference comes from
Debian’s open development model, which welcomes the synergy created by
multiple points of view. The helpful nature of these lists is way above average
for this type of mechanism and most users find it a happy place to be while
learning the ins and outs of the Debian system.

These differences have made Debian a competitive system with the other cur-
rent leaders in the Linux community. The fact that Debian, without corporate
sponsorship, has created a distribution that competes favorably against others
with strong financial backing, is a surprising and remarkable achievement.

What is in this book?

The rest of this book is organized into three major chapters:

Chapter 2: Package Management Tools
Chapter 3: Installation
Chapter 4: Basic System Administration

Chapter 2 contains three major sections, covering the three principle tools
used in managing packages. Starting with dpkg, the command-line utility that
performs the principle package management tasks; the chapter continues with
a discussion of dselect, the first user interface to the distribution archives; and
finishing up with an introduction to apt-get, the newest package installing util-
ity which provides a smoother handling of dependencies, among other useful
features. These discussions are only intended to give the reader an introduc-
tion to these tools, with enough examples to explain installation, upgrading,
and removing packages with these tools. For a detailed understanding of the
advanced features of these tools the reader must wait until they have a Debian
system installed. A search for documents on these tools will teach the novice

user many useful things.

Chapter 3 provides detailed information about the installation of your own
Debian system. The installation process proceeds in two major steps. After
information intended to prepare the user and the machine for the upcoming
installation, this chapter covers both stages of the installation, as seen from a
CDROM installation. Debian provides many different methods of installation,
both from local media as well as several network methods. While all of these
methods are basically similar, there are minor differences that make it difficult
to deliver a general description. Since most editions of this book will come with
some kind of Debian CD, this method was chosen so that a straight forward
description of the install process could be presented. Helpful alternatives are
outlined at the end of this chapter.

24

What is in this book? 25

Chapter 4 offers an introduction to the basics of administering your new
Debian system. Many of the commands described in this chapter are also
useful in daily user operations, so this chapter is useful information even when
the target machine is a private workstation with no network connections. In
addition, examples are provided for adding users, assigning group permissions
and other rudimentary tools for administering a multi-user system like Linux.

In addition to these three chapters there are several appendices, covering var-
ious details useful to the installation process. Also contained in these appen-
dices are several Debian documents of interest, as well as a copy of the license
under which this book is delivered.

Dwarf hopes the reader will find the material in this book to be useful in their
discovery of the Debian GNU/Linux operating system.

Luck,
Dwarf

26

Introduction

Chapter 2

Package Management Tools

Introduction

A package in Debian is delivered in a single file using the .deb extension to
identify it as a binary package. This package file contains all the data and
program executable files delivered by the package, as well as all the control
information used by the package manager to install the files correctly on your
system. While you can install packages without the tools, it is much easier to
install Debian packages with the Debian Package Management Tools.

This chapter covers the three primary package management tools found in
the Debian distribution; dpkg, dselect, and apt-get. The following pages will
cover the use of these tools to install, upgrade, or remove individual packages
as well as groups of packages. In addition the use of these tools to provide
administrative information about the packages installed on the system which
will be described. Details about how packages are actually built can be found
in the developers documents provided with the Debian system, and are not a
part of the material covered in this chapter.

27

28 Package Management Tools

dpkg is a command line interface to the basic package management functions
in a Debian system. This is the earliest tool provided for the system, and
provides all the direct access to the package manager database as well as the
direct manipulation of the packages to install, upgrade, or remove individual
packages. In this section the use of dpkg to install packages, check on the
status of packages, upgrade packages, check which packages are installed on
the system correctly and which failed to completely install, and removal of the
package will be discussed. Examples of each activity will be provided to make

clear how each of these features can be used on your new system.

While dpkg is the real workhorse of the package management system, the
system maintainer will probably only use it on rare occasions to actually install
packages. The first tool to provide features that allowed the installation of
multiple packages in one pass was dselect. This tool is a full screen interface
that allows browsing and choosing from all of the packages available in an
archives. This section will cover such tasks as selecting an archival method,
updating the available packages database, selecting packages for installation,
dependency management, installation, and configuration. While this tool has
some limitations, there are access methods for every conceivable archives type,
and is often the tool of choice for installing several packages at once.

The major deficit for dselect is that it is incapable of installing the packages
in a preferred order. Sometimes this leads to packages that will not install on
the first pass because some package that it depends upon has not yet been
installed. apt-get understands the order requirements of the packages it is
going to install, as well as automatically dealing with the dependencies on the
packages specified. While apt-get is primarily a command line interface, it has
many advantages when installing multiple packages, and works as well over
the net as with a local archives. A complete description of how to set up and
use apt-get will be presented in the last section of this chapter and will include
a discussion of tasks packages as another way to install multiple packages in a
useful group.

Introduction 29

While you will most likely use apt-get for all your package installation and up-
grade needs, a basic understanding of the other tools will help you make the
most out of the package management system provided in the Debian distribu-
tion. It is the goal of this chapter to provide you with this basic understanding
of the package management tools.

dpkg

Introduction

The dpkg program is the workhorse of the Debian packaging system. When
run with root privilege, it installs and removes groups of software files called
packages. For developers, it builds packages. For normal users, dpkg supplies
information on specific packages, the contents of any particular package, or a
list of the installed packages on the system. It does all of these package man-
agement tasks and more. It is used by dselect, another application discussed
in this chapter, to perform the actual installation of packages. Many Perl pro-
grams and scripts make calls to dpkg as part of their operation. A familiarity
with dpkg provides solutions to many general packaging problems. When all
other installation methods fail, dpkg is often capable of resolving the problem.

Dealing with the interdependence of packages is one of the major tasks of
the Debian Package Management System. The dependency checking features
of dpkg are well advanced when compared to other solutions available in the
Linux community. What does this mean? It means that, if you use dpkg
to attempt the installation of a package, and that package depends for its
proper operation on another package that has not yet been installed, dpkg will
complain and fail to install the new package. While this may, at first, seem
to be a problem, it is actually the solution to the problem. It is far more
unsatisfactory to be able to install a package that will not work after it has
been installed. This dependency mechanism protects the system from such
installations. As dpkg provides information on the package dependency that
has not been satisfied, it is a straightforward task to install the dependent
packages. Once the dependencies have been satisfied the package will install
without problems, and run as expected afterwards. On some systems, one
or more of these “dependent” packages might only be supplied by a “local”
version of the software, unknown to the packaging system. There are ways to

30

dpkg 31

force dpkg to install the depending package even when it does not know that
the dependency is satisfied. These options should be used with extreme care,
and an understanding of the consequences. All of these interdependency issues
are dealt with by an interface to dpkg called dselect, described in the dselect
section starting on page 47.

The following discussion will cover all of the options that can be specified when
using dpkg focusing on how to use them. All of the information contained here
is available in “sparse” form by executing dpkg -h |less. Each of those options
will be described in as much detail as possible in the following section.

32 Package Management Tools

Running dpkg

dpkg can be run at two levels. Many of the information features of dpkg
are available to an unprivileged user account. For tasks like removing and
installing packages, root privilege is required. This root privilege may be
obtained from tools like sudo or su if root login is undesirable. Scripts that
use dpkg to install or remove packages must either be run with root privilege
or have the facility to gain root access for the critical operations.

sudo is provided as an alternative to logging in as root to obtain those priv-
ileges. Entries in the controlling file (/etc/sudoers) determine the commands
that a given user can execute with root privilege. In this way, individuals
or groups may be given access to areas of the system which are normally off
limits.

What’s with all this need for root access? Isn’t it dangerous to use root for
such a simple thing as package installation? Well, look at it from another
point of view. Would you wish any user on your system to be able to install a
potentially important package on your system? Those, hopefully, few people
that are trusted to do the maintenance jobs that require root access are also
those folks who should be trusted to install and remove packages.

dpkg 33

Options Recognized by dpkg
Installation and Removal Options

-i | --install <package file>

This option is the standard way to install an individual package. The <package
file> is the file name of the .deb file containing the package and must contain an
adequate path to the file. So if you are currently in the directory /usr/debian
and the archives are in /usr/debian/stable, you can either type:

dpkg -i ./stable/binary-i386/admin/cron_3.0pl1-38.deb
or:
dpkg -i /usr/debian/stable/binary-i386/admin/cron_3.0pl1-38.deb

with the same results. Either of the above lines will install the cron package

on your system from the given location.

This is fine for installing packages one at a time, but an installation of all of
the packages in a given directory tree is possible with the use of the -R. option.
This option causes dpkg to attempt installation of every .deb file that it finds

while doing a recursive search of the declared directory tree.

So, if you wanted to install the entire admin directory as given in the above

example the command would look like:
dpkg -i -R /usr/debian/stable/binary-i386/admin

Because of dependencies between packages this approach will not always (or
even very often) be successful. It is very useful if you have a nonstandard
archive that contains all the packages you wish to install and all of their de-
pendent packages as well. Constructing such archives using FTP to download
only those packages that you need will create archives that dpkg can install as a
group. If the packages are all found in the directory /usr/local/Debian/archive,

34 Package Management Tools

then the command:
dpkg -i -R /usr/local/Debian/archive

will direct dpkg to install all the packages found there. dpkg will install the
packages in the order it finds them. This leaves open the possibility that
dependencies will not be satisfied during the first pass. On large complex

collections of packages this can potentially take several passes at the package
files.

A more general solution is to break the installation phase into two steps.
The first step unpacks the package file, while the second step configures the
unpacked files. Just which files are unpacked, and where they are placed after
unpacking, is determined by a collaboration between dpkg and the package.

--unpack <package file>

Sometimes, as when dependencies get in the way of installation, it is desirable
to break the installation into two separate steps. The --unpack option performs
the first step of the installation. dpkg extracts files from the package and places
them in their correct locations in the file system.

The configuration of the package, including the installation of configuration
files, known as conffiles, is postponed until a later time.

Like install, this option will accept the -R | --recursive option. This allows for
unpacking all of the packages in the given directory tree. Following up on the
example discussed for --install, a large collection of packages gets unpacked by
a command like the following:

dpkg --unpack /usr/local/Debian/archive

dpkg 35

--configure <package name>

This option is used in conjunction with the --unpack option to complete the
installation of a package. This option may involve scripts specific to the pack-
age that put the finishing touches on the package, or it may require that dpkg
manage the installation of files known as conffiles.

conffiles are files that have been declared by their package to require special
handling during their installation. The passwd file, that holds the password
information, is just such a file. dpkg provides the opportunity to replace the
current password file with a new one whenever the package is updated. In
the case of passwd this is usually not desirable, while with other packages,
such as mimetypes, it may be perfectly appropriate. If you do replace an old
conffile with a new one, the old file is backed up with the added extension
.dpkg-old. If you reject the new conffile a copy is provided with the extension
.dpkg-dist. This allows for recovery from mistakes, but it also provides the
material from which a composite conffile can be constructed. Thus, with the
password example, if major changes happened to the structure of the password
file, the new file is accepted and the old data edited into the new file. This
produces a composite password file with the new changes combined with the
old user information.

This --configure option causes these remaining details of configuration to be
completed for a given package. To configure all packages that are unpacked
but not configured the -a | --pending option replaces the package name. To
complete the installation of packages previously only unpacked, the command

looks like:
dpkg --configure --pending

and will complete the installation of any unpacked packages.

36 Package Management Tools

-r | --remove <package name>

This causes the package to be removed but leaves the conffiles installed. When
a package will be removed, but later replaced, it is sometimes desirable to
keep the conffile. An extreme example would be the passwd file. The pass-
word package could be successfully removed without damaging current system
operations only if the passwd file remains intact after the package has been re-
moved. This option provides that capability and allows for a package’s removal

and replacement without loss of the conffile.

The -a | --pending option in place of a package name will cause dpkg to remove
all packages marked for removal in the status file. This status file looks much
like a Packages file with the addition of a Status: field. dselect (discussed in
the next section) edits this file based on the choices selected using its interface.
It is possible to edit the file /var/lib/dpkg/status (where this data is kept), but
it must be done carefully. As with all of the files in this “database” maintained
by dpkg and dselect, disastrous results can come from improper changes. A
reasonable amount of knowledge and understanding should be acquired before
changes are attempted in these files.

Use the tools provided to manage the package system. Only the most dire of
circumstances will warrant abandoning the tools in favor of modifying the files
directly.

--purge <package name>

Unlike --remowve, the --purge option not only removes the package but also
removes all the conffiles associated with that package. In this way all traces
of the package are eradicated from the system. This option also supports the
-a | --pending option in place of the package name.

dpkg 37

Available Packages File Management Options

dpkg and dselect both use the available packages information found in the file
Jvar/lib/dpkg/available. This file is constructed from the Packages file found
in the binary, contrib, and non-free sections of these archives. There are several
tools that dpkg provides, as options, for creating and managing this file.

--clear-avail

dpkg will clear the available packages file of all information when given this
option. There are times when the current file has been corrupted or otherwise
broken in some fashion. This can happen for a number of reasons.

The most common reason is that it has gotten updated from a “broken” Pack-
ages file. In extreme cases, changes to the file format have resulted in files that
failed to work with the old version of dpkg. This requires that the new version
be installed before the file can be fixed. Cleaning out this file allows the up-
grade to go forward. Once completed the available file can again be updated
with the new Packages format and the installation may progress unhindered.
Executing the command:

dpkg --clear-avail

is a way to clean the slate and start over from scratch and will typically be

followed by a dpkg --merge-avail command.

-A | --avail <package file>

This will add the package information, found in the .deb file pointed to by
<package file>, to the available file. So the command:

dpkg -A /usr/local/Debian/archive/joe_2.8-7.deb

38 Package Management Tools

will add an entry to the available file if there is not an entry there already.
If the package has an entry, the entry will be updated with the information
about this version of the package.

--update-avail | --merge-avail <Packages-file>

When the --update-avail option is used, the old information about the packages
in available is replaced by the package information contained in the < Packages-
file>. This file is found in the top directory of a binary distribution, so Pack-
ages files can be found in binary-i386/, contrib/, and non-free/.

Issuing the command:
dpkg --update-avail /home/ftp/stable/binary-i386/Packages

will replace the old available file with the contents of the Packages file found
in /home/ftp/stable/binary-i386. This option is intended for use when a new
release archive is being used.

The --merge-avail adds the Packages file from another binary tree to the list
of available packages. The new information gets combined with the old list,
adding information on new packages to the available file. The following com-
mands:

dpkg --clear-avail

dpkg --merge-avail /home/ftp/stable/binary-i386/Packages
dpkg --merge-avail /home/ftp/contrib/Packages

dpkg --merge-avail /home/ftp/non-free/Packages

will create an available file that reflects all three of these areas of the distri-
bution archives.

dpkg 39

Package System Information Options

-s | --status <package name>

This option delivers the status information, contained in the entry for the
package named, from the status database. Much useful information about
the package can be obtained from this display in addition to the installation
status. Among them, the version of the package, its maintainer, and a brief
description of the package. For instance, the command:

dpkg -s mc
will produce the output:

Package: mc

Status: install ok installed

Priority: optional

Section: utils

Maintainer: Fernando Alegre <alegre@mars.superlink.net>
Version: 3.2.1-1

Depends: 1libch, ncurses3.0, ncurses-base
Suggests: gpm

Conffiles:

/etc/mc/mc.ext 6e672da6b5961ba9125e11824fcb2fef
/etc/mc/mc.ini d41d8cd98£00b204e9800998ecf8427e
/etc/mc/mc.lib fcdd319ffefa2a9cbdb7abfaldccad72d
/etc/mc/mc.menu 4be9e09f0728f993fc468b98db403bel

Description: Midnight Commander - A feature-rich full-screen file
manager. Midnight Commander is a feature-rich file manager. It has
mouse support in a Linux console and in an xterm. It started as a Norton

Commander clone but now it has new features on it’s own.

It does not use libncurses, but it uses the terminfo database. Support
for XView and TCL/Tk is available, but it is still experimental. It is
not included in the current binary.

40 Package Management Tools

--print-avail <package name>

Much the same information is provided by this option as by the --status op-
tion. While the status information is not presented here, the installed-size and
architecture and package size fields are given in this listing.

[ssuing the command:
dpkg --print-avail mc
produces the following output:

Package: mc

Priority: optional

Section: wutils

Installed-Size: 890

Maintainer: Fernando Alegre <alegre@debian.org>
Architecture: 1386

Version: 3.5.17-1

Depends: 1libcb (>= 5.4.0-0), libgpml, ncurses-base
Suggests: gpm

Size: 371140

Description: Midnight Commander - A feature-rich full-screen file
manager. Midnight Commander is a feature-rich file manager. It has
mouse support in a Linux console and in an xterm. It started as a Norton

Commander clone but now it has new features on it’s own.
It does not use libncurses, but it uses the terminfo database.

Support for XView and TCL/Tk is available, but it is still experimental.
It is not included in the current binary.

dpkg 41

-L | --listfiles <package name>

All of the files that dpkg installed for <package name> are listed by this option.
This does not, of course, include files created by installation scripts, as they
are unknown to dpkg. Thus, the command:

dpkg -L mc
produces the following output:

/.

/usr

/usr/bin

/usr/bin/mcserv

/usr/bin/mc

/usr/lib

/usr/lib/mc
/usr/lib/mc/icons
/usr/lib/mc/bin
/usr/lib/mc/bin/create_vcs
/usr/lib/mc/bin/cons.saver
/usr/lib/mc/bin/mcfn_install
/usr/lib/mc/term
/usr/lib/mc/term/ansi.ti
/usr/lib/mc/term/linux.ti
/usr/lib/mc/term/vt100.ti
/usr/lib/mc/term/xterm.ti
/usr/lib/mc/term/xterm. tcap
/usr/lib/mc/term/xterm.ad
/usr/lib/mc/term/README. xterm
/usr/lib/mc/extfs
/usr/lib/mc/extfs/zip
/usr/lib/mc/extfs/zoo
/usr/lib/mc/extfs/1s1R
/usr/lib/mc/extfs/a
/usr/lib/mc/extfs/rpm

42 Package Management Tools

/usr/lib/mc/extfs/deb
/usr/lib/mc/extfs/ftplist
/usr/lib/mc/extfs/extfs.ini
/usr/lib/mc/extfs/README
/usr/lib/mc/mc.hint
/usr/lib/mc/mc.hlp
/usr/lib/mc/mc.tcl
/usr/share/man
/usr/share/man/man1
/usr/share/man/manl/mc. 1
/usr/share/man/man8
/usr/share/man/man8/mcserv.8
/usr/share/doc
/usr/share/doc/copyright
/usr/share/doc/copyright/mc
/usr/share/doc/mc
/usrshare/doc/mc/README
/usr/share/doc/mc/FAQ
/usr/share/doc/mc/NEWS

/etc

/etc/mc

/etc/mc/mc.ext
/etc/mc/mc.menu
/etc/mc/mc.lib

/etc/mc/mc.ini

listing every file installed by the mc package.

-1 | --list [<package name pattern>]

Packages that match <package name pattern> are listed by this option, along
with their installed status, the version number and the short description.

If no <package name pattern> is supplied then the list is a complete list of
the installed packages on the system. Following our example with mc the

dpkg 43

following command:
dpkg -1 mc
will produce the following output:

Desired=Unknown/Install/Remove/Purge

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err:
uppercase=bad)

||/ Name Version Description

+++-

ii mc 3.2.1-1 Midnight Commander - A feature-rich full-scr

-S | --search <search file pattern>

The package containing the file described by <search file pattern> is returned
by this option. Both the package and the location of the file are displayed
in the output. To deviate from our current example, with something a little
more informative, the following command:

dpkg -S whereis
creates the output:

util-linux: /usr/bin/whereis
util-linux: /usr/share/man/manl/whereis.l.gz

providing the information that this program is available in the package called

util-linux. Installing that package will provide the whereis program.

44 Package Management Tools

-C | --audit

All of the packages that are not completely or correctly configured are listed by
this option. Most often the correct solution is to run dpkg --configure jpackage;
to complete the installation. Executing the command:

dpkg -C
will create a listing something like:

The following packages have been unpacked but not yet configured.
They must be configured using dpkg --configure or the configure
menu option in dselect for them to work:

svgalibl-bin SVGA display utilities

ncftp A user—-friendly and full-featured FTP client.

statserial statserial - displays serial port modem status lines
ftape QIC-117 (Floppy-tape) driver, in source code form.

j1 J is a dialect of APL freely available on a wide variety
tk40-dev The Tk toolkit for TCL and X11 - Development Package.
expect The expect/expectk programs and libraries.

tclX Extended Tcl (TclX).

acct The GNU accounting utilities.

The following packages are only half configured, probably due to problems
configuring them the first time. The configuration should be retried
using dpkg --configure <package> or the configure menu option in dselect:

xdevel XFree86 3.1.2 developer’s toolkit

dpkg 45

Force Options

Force options are used to override the default behavior of dpkg. These options
should be used with some forethought, due to the potentially dangerous nature
of these commands. Each of these commands forces dpkg to perform in a way
that is foreign to its normal behavior. This opens possibilities for damage to
the system that are otherwise well contained.

The force options have two actions:

--force-<thing> which reduces errors on <thing> to warnings
--refuse-<thing> stops execution on encountering errors on <thing>

--no-force-<thing> == --refuse-<thing>

thus each of the options in this section can be preceded by either of the above

prefixes.

downgrade
Install the selected package even when the current installed package is a newer
version than the one to be installed. This option is enabled by default.

configure-any
Configure any other packages, as well as this one, that this package depends
upon, which is currently only unpacked and not yet configured.

remove-reinstreq

Even if the package has been marked for required re-installation this force
option will allow its removal. It is understood that under some circumstances
this will result in files being left behind without dpkg’s knowledge.

46 Package Management Tools

remove-essential

Removal of essential packages is not recommended because these packages are
required for the proper operation of the system and removing them may break
the system. In some rare cases, like the name change of a package, or the
replacement of functionality by privately built software, it becomes necessary
to remove one of these packages. This force option will allow that removal to
proceed.

Miscellaneous Options

--print-architecture
Outputs the architecture of the machine for package building purposes.

--print-gnu-build-architecture
Prints the gnu format architecture of the machine.

--print-installation-architecture

Same as --print-architecture, but used by installation programs.

--license

Prints license and copyright information

--version
Prints the version of dpkg

--help
Displays a list of the options that dpkg currently supports, with a brief de-
scription of the options and their function.

dselect

Introduction

dselect is both a very powerful tool and a very difficult one for the new user
to work with. Some folks have problems with the interface because it is unlike
anything else on the planet. Many of the keys used are not the “standard”
keys used to perform these functions in other software. Others are surprised
by some of the “unexpected” things that dselect will do for, and in some cases,
to them. Yet, there are many satisfied dselect users, some who would complain
loudly if dselect were to change in any way. This suggests that the tool does
what it was designed to do. The following discussion is intended to help the
beginner figure out how to make dselect work for them.

In general, the principal rule when using dselect is: Pay very close attention
to all the messages that appear on the screen before you press any keys. Even
if you have seen the screen dozens of times before, you are cautioned to think
twice before you initiate any key strokes. Read the help information that
is available every time you use the program, until you are completely famil-
iar with the information contained there. Take notes when odd behavior is
noticed.

dselect uses separate scripts to manage the access portion of its functional-
ity. These scripts, called methods, deal with the task of mounting the device
containing the archive. As such, they are referred to as, mountable methods.
There is a package called dpkg-mountable that not only adds another mount-
able method to dselect but also provides a log of all dpkg activity during the
dselect session. This can be invaluable in determining just what went wrong
with a particular installation attempt. This method is now a part of dselect
and may be chosen from the Access menu option.

47

48 Package Management Tools

Using dselect

When dselect is executed, the first screen is the main menu which contains the
following seven options:

[Alccess Choose the access method to use.

[Ulpdate Update list of available packages, if possible.
[Slelect Request which packages you want on your system.
[ITInstall Install and upgrade wanted packages.

[Clonfig Configure any packages that are unconfigured.
[R]emove Remove unwanted software.

[QJuit Quit dselect.

D Ok W NN+~ O

These selections can be chosen by either using P and N (indicates the control
key is pressed with the letter) to move up and down the list (up and down
arrows work as well) and pressing enter when the highlight bar is on the option
you wish to choose, or by pressing the key for the character found in square
brackets at the beginning of the option name.

0. [A]ccess

If no additional methods (like dpkg-mountable) have been installed then se-
lecting [AJccess will provide the six access methods: cdrom, nfs, hard disk,
mounted, floppy, and ftp. Each of these “methods” needs slightly different
information. The goal is to find the Packages file for the various pieces of the
distribution.

The top half of the screen, topped with the red title bar, shows the menu
items. The list can be traversed with the arrow keys and enter selects the item
under the highlight bar.

The bottom half of the screen is bounded by blue highlight bars. The top
bar names the access method currently highlighted. In between the bars is
descriptive help information about the highlighted selection. The bottom bar

dselect 49

indicates the percentage of text viewed, and the key that will change the

current text position in the window.

This is a common pattern in dselect. The upper portion of the window i s
where the activities occur and the bottom half provides additional information
to help make the choice.

cdrom:

What you need to know:

e Device driver name for CD-ROM if not yet mounted
e [s the CD-ROM image a “standard” distribution?

e Mount point if already mounted.

The cdrom method will find an already mounted CD-ROM or will ask for the
device driver that will mount the correct drive. All such drivers are found
in /dev and thus, the specification of an sbpced driver would be /dev/sbpcd0
for the SoundBlaster Pro driver, /dev/scd0 for the first SCSI CD-ROM, and
possibly /dev/hdb1 for an IDE ATAPI type drive that is the slave on the first
IDE controler.

Once the drive is mounted the next problem is finding the distribution on the
CD-ROM. The standard archives, as well as the CDs, use the path debian/dists
for all the releases held in the archives. The release archives, called stable are
pointed to by a symbolic link in this directory, so the path that dselect is
looking for is: debian/dists/stable. dselect will append /main/binary-i386 to
obtain the complete path. If you have a nonstandard CD, look for the directory
main/binary-i386 and supply the path which leads to it.

50 Package Management Tools

It is safe to assume that the archive is standard, since dselect will notice if it
is not and ask again for the location of the top of the archive. See the Notes
section on page 53 for more details.

nfs:

During a fresh installation, when you first get introduced to dselect, there
will only be an Internet connection available if the machine uses an Ethernet
card and it is recognized by the installation kernel. Without this kind of
configuration a PPP/SLIP connection, typically through a modem, must be
established before proceeding with this step. Note: There are several other
ways to make a connection to another machine, local area net, or wide area
net. Ethernet and PPP/SLIP are the most common. By whatever method,
once a connection to the desired host is available, this method can be used.

What you need to know:

e URL to the NF'S mount.

e Directory structure found on that mount.

When this option is chosen, the first request is for the domain name of the
NF'S server. This can be a numeric IP address, or a fully qualified domain
name, of the form something.someplace.net, which will be used to contact the
server. The installation software will mount the NFS volume found at the
declared IP address.

Once mounted, the location of the “top level” of the distribution is re-
quired. dselect is expecting the path to a directory called stable that contains
main/binary-i386. Some archives don’t support this path structure. Under
these circumstances it becomes necessary to specify each binary distribution

dselect 51

individually, and the correct answer is “none”. See the Notes section on page 53
for more details.

harddisk

Use this access method only when the hard disk device containing the archive

is not yet mounted.

What you need to know:

e Device name for the hard disk partition containing the archive.

e Path to the various archives.

dselect will ask for the device name of the disk partition containing the archive.
Once it has successfully mounted this partition it will request the path to the
“top level” of the distribution. If you have a standard distribution this should
be the path to the sub-tree, main/binary-i386, otherwise the answer is “none”.
See the Notes section on page 53 for more details.

mounted

When the archive of the distribution is already mounted, this option only
needs to know where the “top level” of the distribution is. This method does
not care if the device containing the archive is a hard disk, a CD-ROM, or
an NFS mount on another machine, so this method can be used to make
a nonstandard CD-ROM or NFS mount “look” like a standard distribution.
This can be done by constructing a subdirectory tree that will act as the
“top level” of the distribution. Create a mount point (subdirectory) in the
“top level” directory and mount the CD-ROM or NFS to that mount point.

52 Package Management Tools

Then create symbolic links for “stable”, “contrib”, and if available, “non-free”.
Make these links point to their respective places in the mounted archive. As
an example: If the mount point is /mnt/dist/debian and the path on the CD-
ROM to binary-i386 is /bo/binary-i386, then the link would be made by the
following commands:

cd /mnt/dist
In -s debian/bo main

with similar constructions for the contrib and non-free sections.

Once the directory structures are in place then just give /mnt/dist as the “top
level” of the distribution. If this seems too complicated then simply answer
“none” to the first prompt and then give the explicit path to each of the
parts of the distribution being installed. (See the Notes section on page 53 for
details.)

floppy:

This is not a recommended installation method. Floppies are notorious for
their failure rates. If there is a machine with an archive and Linux, and
floppies are going to be made on that machine for one that only has floppy
drives, it would be far more successful to bring the machines close enough
together to install a null modem cable between them and establish a SLIP
connection between the two machines and proceed with an FTP installation.

If this is impossible. . ., then the problem becomes one where you must have
far too much idle time on your hands. CD-ROM drives are cheap. Buy one. If
you wish to install the complete binary distribution, it rings in at just under
400 MB. Even on 1.44 MB floppies that’s still around 280 floppies.

For a limited number of packages this method has a reasonable chance of
success. The best approach for this is to place all of the .deb files for the

dselect 53

packages to be installed into one directory and build a Packages file for them.
See Building Packages Files on page 77 for details.

ftp:

What you need to know:

o The domain name for the FTP site that is to be used.

e The path structure of the archive on that site.

Selecting this method will result in a prompt for the domain name of the ftp
site which will be used for the installation. As with the other access methods,
the path to the archive must be known and supplied for the proper continuation
of the installation.

Notes

Each of the above access methods will at some point ask for the location of
the “top level” of the distribution. If the archive is in the “standard” form,
pointing to this “top level” will be all that is necessary. dselect will find a
Packages file for the binary-i386 portion of the distribution as well as contrib,
and non-free. The path to the local distribution will be asked for separately,
as well as any of the above that were not found in the “top level”.

If the distribution is in a nonstandard layout, dselect will notice this and
complain that what was identified was not, in fact, the “top level”. In this
case simply answer “none” and each section will be prompted for separately.

54 Package Management Tools

Note: Switching VCs (see below) will allow an investigation of the
distribution archive so that the path to binary-i386 can be

found as well as contrib and non-free.

Note: The Virtual Console (VC) is a method for sharing the con-
sole monitor with more than one login process. Debian con-
figures six Virtual Consoles. The left ALT key pressed along
with a function key (F1 thru F6) will place the corresponding

session on the monitor. It’s like having 6 separate terminals!

In addition to the three “standard” distribution collections, dselect offers the
option of giving the location of the “local-distribution”. This local distribution
is for use at the direction of the local system administrator. Packages that
have been created as .deb package files that are not available from the Debian
archives are candidates for placement in the local archive. Although alternate
packages that do exist in the archive can go here, the Packages file for the local
archive must be “merged” by hand using dpkg --merge-avail before dselect
will recognize them for installation. This is because dselect is unwilling to
downgrade a package, so those packages must be the only ones in the available
file for proper installation. If the intent is to operate in this fashion then the
update of available will need to be done by hand and the “Updated Available
file” option should not be executed.

1. [U]pdate

Choosing this option will update the available packages file from the Pack-
ages files available from the various distribution sections you identified in the
“Access” section. If any custom construction of the available packages file has
been done, then this option should not be executed.

dselect 55

2. [Slelect

This option delivers the main power of dselect as well as providing the greatest
challenge. Here is where a thorough knowledge of the various keys used by

dselect will provide major benefit.

Novice use of [S]elect

For th