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Abstract

In complex adaptive systems, where internal and external non-linear interactions give rise
to an emergent functionality, analytic decomposition of component and isolated functional
evaluation of them is not a viable methodological practice. More recently, embodied
bottom-up synthetic methodological approaches have been proposed to solve this problem.
Evolutionary simulation modelling (specifically evolutionary robotics) provides an explicit
research methodology in this direction. We argue and illustrate that the scientific relevance
of such methodology can be best understood in terms of a double conceptual blending: i)
a conceptual blending between structural and functional levels of description embedded in
the simulation; and ii) a methodological blending between empirical and theoretical work in
scientific research. Simulation models show their scientific value on: reconceptualization
of theoretical assumptions; hypothesis generation and proof of concept. We conclude that
simulation models are capable of extending our cognitive and epistemological resources
to (re)conceptualise scientific domains and to establish causal relations between different
levels of description.
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∗The ideas developed in this paper have being originated in a paper working by Roberto
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1 Structure and function: limits of traditional me-

chanistic methodology in complex systems

1.1 Complexity and localisation

The Cartesian method of divide and conqueer, the decomposition of a sys-
tem in components and their isolated analysis has long been the mainstream
methodological strategy of scientific enquiry on the understanding of func-
tional systems, i.e. mechanistic explanations.
In the field of cognitive science computational functionalism has proceed

by what Bechtel and Richardson (1993) call a synthetic top-down decom-
positional method, i.e. decomposing functional or task related cognitive
structures (perception, memory, reasoning, action, etc.) dividing them into
sub-components, and establishing a set of computational relations among
subsystems.
On the other hand neuroscientific research has focused on neurophysio-

logical decomposition of neural structures and localisation of such functional
cognitive components: an analytic bottom-up approach.
We shall understand localisation (the main mechanistic explanatory stra-

tegy) as a mapping between a physical structure (operationally tractable set
of variables, whether they are biochemical or neurodynamic) and a functio-
nal structure (a set of computational components). Advances on neurop-
hysiology and computational functionalism shall, in turn, end up providing
us with such mechanistic explanation if: a) we don’t want to assume a
metaphysical dualism, and b) computational-functionalist interpretations of
cognitive behaviour are to be considered the ‘right’ functional interpretation
among all the possible ones.
The problem arises when recent interest on complex systems has shown

that such methodology (decomposition and localisation) fails to understand
nonlinear systems Langton (1996). When the interactions between compo-
nents are non-linear the principle of aggregation or localisation presupposed
in traditional decompositional methods does not hold. The system is more
than the sum of its parts, the superposition of isolated components does
not give rise to the essential properties of the whole system. It is the non-
linear interaction between components what determines the properties of the
system creating a kind of structural complexity where the relation between
function and structure cannot be established by the traditional decompo-
sitional method; i.e. no mapping can be established between functional
components and structural (neurophysiological) components.
In addition to this structural complexity we have an interactive comple-

xity where the system interacts with its environment in such a way that the
overall functionality of the system emerges from highly interactive loops.
But things can go even worst on complexity, as Harvey et al. (1997) put it:
“Interactions between separate sub-systems are not limited to directly visi-
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ble connecting links between them, but also include interactions mediated
via the environment” (p.205).
As Clark (1996, 1997) has pointed out the nature of what he calls inte-

ractive emergence seriously compromises the classical computationalist de-
finition of function by:

� The dissolution of functional structures in highly interactive loops bet-
ween agent and environment.

� The dissolution of functional structures in distributed causal networks
on the side of the agent’s behavioural mechanism (neural networks).

Thus in complex adaptive systems where internal and external nonli-
near interactions give rise to an emergent functionality top-down functio-
nal or task decomposition and their structural localisation is not a viable
methodological practice. In mathematical terms structural complexity is a
consequence of the impossibility of the analytic solution for the nonlinear
differential equations determining system behaviour and the high sensitivity
of the system to boundary conditions (when it exploit particular features
of the environment to achieve functionality) or the opposite, the metaesta-
bility of the system under structural perturbations, i.e. its self-regulating
capacity.

1.2 Complexity in cognitive science

In the realm of cognitive science both aspects of emergent functionality (the
structural and interactive) gave rise to two different radical modification of
the orthodox functionalist-computationalist research program (Fodor, 1987;
Block, 1996). Concerning structural emergence the PDP approach showed
that cognitive processing was not the output of sequential symbol manipu-
lation procedures but the outcome of highly distributed sub-symbolic net-
works. The interactive complexity has been highlighted by the more recent
embodied and situated approach to cognition (Brooks, 1991b,a; Pfeifer and
Scheier, 1999).
What embodiment and situatedness illustrates is that the way the speci-

fic adaptive function is achieved involves a dynamic coupling between agent
and environment where no structure of the agent can be pointed to be
sufficient for the function to happen. We can contrast this embodied and
situated functionality, what Luc Steels has called emergent functionality

(Steels, 1991), as opposed to hierarchical systems. Hierarchical systems are
those where the system can be decomposed into different components which
perform isolated functions by directly controlling the variables defining the
function, i.e. the structure of the mechanism and the function it performs
are codefined, localisation is possible. An example of a hierarchical system
is a motor engine where, for example, a valve that controls the flow of oil to
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an engine performs it function by directly manipulating the size of the gap
through which the oil flows.
Bonabeau and Theraulaz (1995) show how the manipulation of boun-

dary conditions1 not defining the function itself play a fundamental role
in the performance of emergent functions. Given an environment E =
{x1, x2, . . . , xn, . . . , xm} and the subset of environmental variables defining a
function En = {x1, x2, . . . , xn} a function is defined as F (En) = dx1/dt, . . . , dxn/dt.
An structure S performs the function F iff: S(E) = F (En). What reductio-
nists2 presuppose is that {xn+1, . . . , xm} remains constant, i.e. δS/δxi = 0
for i = {n + 1, . . . ,m}. In short: reductionists believe that the external
variables of those defining a function do not affect how a structure performs
that function. Embodiment and situatedness shows how agents exploit many
features of their body and environment (boundary conditions) to perform
functions which are not defined by those body/environment features. In
other words localisation (i.e. mapping between structural and functional
components) cannot succeed because the system exploits interactive feed-
back loops with environmental features to satisfy functionality.
The way some adaptive systems exploit several environmental features

to perform functions and the highly interconnected and recursive nature of
the causal network of their internal structure does not allow for the tra-
ditional analytic methods to be successfully aplied. Under this situation
new methodologies has been proposed as suitable tools to explore complex
systems: what we will call synthetic bottom-up simulation modelling.

2 Synthetic bottom-up simulation modelling

2.1 The situated, synthetic bottom-up approach

During the late 80s and early 90s a new methodological paradigm for the
study of complex adaptive systems came to being. Alife (Langton, 1996;
Bedau, 2001) and situated robotics proposed a bottom-up, situated and
synthetic approach toward the modelling of complex systems.
The approach is synthetic because understanding of a systems is expec-

ted to be achieved by building similar systems; i.e. by synthesis rather than
analysis. The approach is bottom-up because the functionality of the system
is achieved as emergent from structural local rules and local system envi-
ronment interactions rather than functional components and informational

1According to Bonabeau and Theraulaz (1995) boundary conditions are those constrai-
ning lower-level processes to give rise to the “proper” emergent behavioural pattern. The
internal local rules of a system (the neural network in an agent) are generally unspecific
on their functionality. Extreme reductionism only considers internal explanations (logi-
cal/causal relationship defining functionality by means of their correspondence relation
with the environmental variables defining the function) of the performance of a function.

2Bonabeau and Theraulaz take for reductionist those researches involved in the locali-
sationist program
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input-output relations between them. Repeated and distributed local inte-
ractions give rise to a global pattern of system behaviour, it is in this global
pattern that functionality is found and not in the local components of the
system; i.e. there is no mapping between structural components and func-
tional components. There is no explicit encoding of the global behaviour.
Finally the approach is situated : systems are built in real or simulated envi-
ronments with direct sensory-motor links (i.e. input-output relationships are
not symbol based). This methodology is the core of Alife techniques (Lang-
ton, 1996; Bonabeau and Theraulaz, 1995; Bedau, 2001) and embodied and
situated robotics (Brooks, 1991b,a; Pfeifer and Scheier, 1999), among ot-
hers. In order to understand the scientific value of such methodology we
shall focus on a well established and successful specific methodology which
is that of evolutionary robotics (Harvey et al., 1997; Husbands et al., 1997;
Nolfi and Floreano, 2000) and Randall Beer’s minimally cognitive behaviour
program (Beer, 2001; Slocum et al., 2000).

2.2 Evolutionary Robotics and the minimally cognitive beha-

viour program

Since structural decomposition of a complex system fails to grasp the essen-
tial local interactions that give rise to functional behaviour synthesis looks
like a natural way to deal with such a problem, it is on the synthesis that
knowledge is achieved, on the manipulation of parameters and local rules
while putting together the components of the system. But the very nature of
complex systems makes its synthesis a problematic issue, that’s precisely the
locus of complexity and, unlike functionalist top-down synthesis, complex
systems are not manageable for human understanding3. As a solution to
this problem artificial evolution has been widely used to synthetize a func-
tional system. A particular case of this technique is given by evolutionary
robotics and the minimally cognitive behaviour program.
Evolutionary robotics and evolutionary simulation models have success-

fully been applied to achieve a number of complex behaviours, among them:
plastic development (Floreano and Urzelai, 2000, 2001), robot team coor-
dination and role allocation (Quinn et al., 2002), communication (Quinn,
2001), shape recognition (Cliff et al., 1993) , pursuit and evasion (Cliff and
Miller, 1995), acoustic coordination (Di Paolo, 2000a), learning (Tuci et al.,
2002), adaptation to sensory inversion and other sensorimotor disruptions
(Di Paolo, 2000b), active categorical perception (Beer, 2001), short-term

3“Recent research in the psychology of judgement indicates that humans have great
difficulty comprehending cases with more than a few interacting variables. Humans cannot
use information involving large numbers of components or complex interactions of com-
ponents, and even when the problem tasks are computationally tractable, human beings
do not approach them in this way. Complex systems are computationally as well as psy-
chologically unmanageable for humans” (Bechtel and Richardson, 1993, p.27), emphasis
on the original.
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memory, self-nonself discrimination, selective attention, attention switching,
anticipation of object movement (Beer, 1996; Gallagher and Beer, 1999; Slo-
cum et al., 2000), etc...
Evolutionary simulation model synthesis proceeds as follows:

1. Definition of a set of body, environment and neural structures (unspe-
cified on their parameter values).

2. Artificial evolution of parameters according to a given fitness function.

3. Reproduction/simulation of system behaviour with numerical met-
hods.

Body and environment can be real or simulated, in the last case khe-
pera like robots are usually simulated (i.e. circular two dimensional robots
with two wheels and different sensors) and the resulting controll architec-
ture exported to the real robot (not without problems (Jakobi et al., 1995)).
What is interesting for our discussion is the structure of the neural controll
architecture. The basic structure of the neural network is generally a Con-
tinuous Time Recurrent Neural Network CTRNN (which are in principle
capable of the dynamical behaviour of any other dynamical system with
a finite number of variables (Funakashi and Nakamura, 1993)). CTRNNs
are fully connected, recursive, dynamic (time and rate dependant), controll
architectures specified by the following state equation:

τiẏi = −yi +
n∑

j=1

(wijzj) + gi

5∑

k=0

skiIk ;

where zj =
1

1 + exp(−(yj + bj))
(1)

where y is the state of each neuron, τi is the time constant (de-
cay constant for neural activity), wij is the connection weight
between neuron i and j, zj is the activation of neuron j, yj is
j’s state and bj a bias term; gi is a gain applied to the overall
sensory input to the neuron, ski is the input weight from sensor
k to neuron i and Ik is the input value of sensor k. States are
initialized at 0 or a random value and the CTRNN is integrated
using forward Euler method. All neurons are connected to each
other and to themselves.

Over this basic architecture more complex mechanisms can be imple-
mented, such as gas-nets (Husbands et al., 1998) and synaptic plasticity
(Di Paolo, 2000b; Floreano and Urzelai, 2001).
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Controll parameters (plastic rules, time constants, number of neurons,
weight values, etc...) are left to evolutionary search as well as some body-
sensor parameters (motor transfer parameters, position of sensors, etc. –
depending on the particular case). The structure of the simulation is thus
defined as a dynamical system and is implemented in a simulation model
where the state of the system is numerically calculated for short time-steps.
After deciding the basic structure of the simulation a genetic algorithm

is used to evolve the parameters with the following procedure:

1. All the parameters are encoded in a genotype (taking random values
constrained between pre-specified values).

2. A population of genotypes is randomly created.

3. A fitness function is defined to asses the fitness of the produced beha-
viour given a set of parameter values (genotype). Examples of fitness
function are distance to a given object, performance in a learning task,
stability and robustness of walking behaviour, etc.

4. All the genotypes in the population are evaluated according to the
fitness function in the body-environment simulation.

5. The best genotypes are selected for reproduction and a new population
(generation) of genotypes is created and randomly mutated.

6. Steeps 4 and 5 are repeated until a given fitness value is achieved.

In brief what we get is a simulation model were local interaction rules
(achieved determining parameter values through evolution), recursively (th-
rough the numerical calculation of states) applied give rise to a global system
behaviour (specified by the evolutionary fitness function). The question now
is how does this modelling technique contribute to scientific development
once decomposition and localisation are shown to be unapropiate methods?

3 Methodological and conceptual blending

The role of bottom-up synthetic simulation models (and more specifically
evolutionary robotic simulations) is, we will argue, that of providing: a) a
conceptual blending between lower level mechanisms and global behavioural
patterns and b) a methodological blending between empirical and theore-
tical domains. We take the notion of blending (and conceptual blending
in particular) from Fauconnier and Turner (1998) who analyse conceptual
blending as a major cognitive process in which projections from two diffe-
rent conceptual spaces blend into a single conceptual space on which new
relations and structures are discovered, which feed-back to the input spaces
thus producing new knowledge.
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3.1 Simulations as conceptual blenders

The problem of functional decomposition explained above has been skip-
ped in traditional scientific practices by dividing natural objects of study
on different levels of description and finding specific observables on each
level and lawfull regularities among those observables. This way neurop-
hysiological and behavioural or cognitive levels of observation become two
separated scientific domains. The problem arises when localisation of func-
tional (cognitive) components into structural components fails as a result of
the underlying complexity of the system.
In such cases we believe that simulation models act as computational

and exteriorized conceptual blenders, where two distinct conceptual spa-
ces, structural (neurodynamical) and behavioural (cognitive), merge into
the simulation, feeding back to both input domains. Simulation models in
evolutionary robotics are not neurobiological models (in fact they are ge-
nerally very poor in comparison with computational neuroscientific models
of neurons), nor they are purely cognitive models (which are often build in
purely functional or representational terms) but conceptual blender between
both functional and neurobiological models.
At a first view it could be argued that the blended space being artefactual

doesn’t satisfy Fauconnier and Turner’s theory which presupposes that the
blended space is a mental space and that cognitive operations on that men-
tal space are the source of new knowledge. Nontheless, carefully analysed,
simulation models do in fact satisfy most (if not all) of the characteristics
of mental blending spaces. The neurophysiological input space projects into
the blended through the abstraction of local rules from neurophysiological
models. The cognitive input space projects by conceptualising the emer-
gent behavioural pattern as non trivially cognitive; i.e. the emergent global
behaviour is considered a cognitive behaviour. What remains opaque (until
the experimenter abstracts explanatory patterns) is the cross-pace mapping,
because of the dynamical complexity of the emergent phenomena. In the
case of evolutionary robotics artificial evolution is used to create the blen-
ded space, and numerical calculations to run the blended space which is not
purely relational but dynamical.
The main difference between mental and artifactual blended spaces is

not its position in relation to the skull (after all cognitive capacities are well
understood as being distributed and also extracraneal Clark and Chalmers
(1998)) but the capacity of computational simulation models to solve diffe-
rential equations numerically and implement massive and recursive compu-
tations to produce emergent simulation models; human manipulation, trans-
formation and experimentation with the computational model works as well
as it does with mental models.
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Figure 1: Simulation models in scientific processes

3.2 Simulations as methodological blenders

After deciding what evolutionary simulation models are the question now is
to understand what is their scientific value if they aren’t models of biological
phenomena nor models of cognitive functionality; if they don’t even try to
fit any empirical data (Di Paolo et al., 2000).
We believe that simulation models are better understood as methodo-

logical blenders (this time in a loose sense of blending only metaphorically
related to Fauconnier and Turner’s work) between purely emprical and pu-
rely theoretical domains (whether this extreme positions exist or not, as
such, is not an issue here). Specially significant is the relation simulation
models establish between theoretical assumptions (adaptationism, represen-
tation, innateness, etc.) and empirical models.
Di Paolo et al. (2000) argue that simulation models work as opaque

thought experiments halfway between empirical models (in virtue of their
capacity to produce non-trivial data through the computational emergence
of global patterns) and theoretical tools (since they address abstract theo-
retical/conceptual issues rather than specific empirical targets, unlike bio-
robotic models (Webb, 2001)). Following their argument we believe that
simulation models show a scientific value on:

� reconceptualization of theoretical assumptions by means of the disso-
nances that come about in their implementation (as it has been the
case with emergent functionality and the discovery of the significance
of embodiment and situatedness in the production of adaptive and
cognitive behaviour);
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� hypothesis generation by discovering intermediate explanatory pat-
terns (as internal homeostasis to explain readaptation to sensorimotor
disruptions (Di Paolo, 2000b)); and

� proof of concept by producing certain behavioural patterns with or
without certain lower level mechanisms (as it is being the case on the
representationalist-antirepresentationalist debate in cognitive science).

4 Conclusion

The scientific value of computational simulation models can be understood,
from a higher perspective, as diminishing the constraints acting upon scien-
tific development, as defined by Bechtel and Richardson (1993). In relation
to psychological constraints it shall be clear by now that simulation models
extend human capacities providing a kind of externalized and computa-
tionally powerfull conceptual space in silico. At the same time the way
in which human understanding is constrained on big search spaces is now
been solved by artificial evolution as a genuine tool to explore search spaces
(Mitchell, 1996). Thus there are, at least, two ways in which human psy-
chological capacities are enhanced with simulation models (other than the
classical memory capacity, computational power, and speed): a) by concei-
ving dynamical objects composed of highly interacting components, and b)
by exploring search spaces with artificial evolution. On the side of pheno-
menological constraints we believe that simulation models come to produce
new artificial phenomena which can be studied (and often are) in their own
right, and in a scientifically relevant way when considered as artifactual
phenomena blending distinct modelling (scientific) spaces. It is possibly
in relation to operational constraints where simulation models have being
traditionally considered to have a major contribution, on that simulation
models provide to the experimenter a complete control over variables, and
repeatability under different conditions. Finally physicall constraints are
considered by Bechtel and Richardson (1993) as limiting the range of allo-
wed component functions by the requirement that they must be shown to
depend systematically on physical structures. Once again we believe that
evolutionary simulation models provide one of the most powerfull cognitive
tools to explore the systematic dependencies between lower level mecha-
nistic (physical) constraints and the produced emergent phenomena, acting
themselves (when no other complexity reduction is possible —by extracting
intermediate explanatory patterns) as explanations of bottom-up causation.
We conclude that simulation models are capable of extending our cog-

nitive and epistemological resources to (re)conceptualise scientific domains
and to establish causal relations between different levels of description. Si-
mulation models become, blended with traditional empirical methodology,
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crucial tools for the scientific research on complex systems and cognitive
science.
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