
Entanglement distribution
in quantum complex networks

Martí Cuquet

Grup de Física Teòrica: Informació i fenòmens quàntics
Departament de Física
Facultat de Ciències

Tesi del programa de Doctorat en Física de la
Universitat Autònoma de Barcelona

escrita sota la direcció del
Prof. John Calsamiglia Costa

Bellaterra, setembre de 2012



Copyleft ©2012 Martí Cuquet Palau <marti.cuquet@gmail.com>

This work is licensed under the terms of the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported Licence. You are free to copy, com-
municate and adapt this work, as long as your use is not for commercial pur-
poses, any derivative works are licensed under this license (or similar license to
this one) and you attribute Martí Cuquet. The full license can be found at
http://creativecommons.org/licenses/by-nc-sa/3.0/.

Source of epigraphs (p. iii): Joan Fuster, Diari 1952–1960, p. 429; Pere Calders,
Ronda naval sota la boira.

Cover design by Judit Armengol Monpel http://www.juditarmengol.com

This thesis was written with vim and typeset by LATEX, using typefaces TeX Gyre
Pagella and Latin Modern Sans.

<marti.cuquet@gmail.com>
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.juditarmengol.com


La teoria dels homes se superposa a la realitat
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CHAPTER 1

Introduction

The picture that we form from our world is based on our observations: the process
through which we perceive things, and register them as relevant. We have always
relied on this process to obtain information and reduce the uncertainty of our
knowledge about the environment. In the Nineteenth century, Boltzmann quanti-
fied uncertainty as the number of possible microstates of a system, and provided
a new interpretation of entropy as a measure of this uncertainty. This concept
appears later in the work of Shannon (1948), in the middle of the last century,
who quantifies the amount of information transmitted in a communication setting
in terms of the probability of occurrence of an event from a set of alternative
possibilities.

Last century saw also the origin of quantum mechanics, a theory that originated
to describe many counterintuitive observations of microscopic systems that could
not be explained by classical theories. Quantum mechanics has since then become
a fundamental theory of physics, with a remarkable precision in the description of
experiments. At the same time, it has provided a revolutionary interpretation of
nature whose influence spreads to all disciplines of human knowledge. Quantum
mechanics includes uncertainty as a fundamental property of nature, and not as a
lack of information from our side. It also describes observation, or measurement,
not as a mere obtention of information of a system but as a process that also
disturbs and modifies it.

Quantum information theory emerged from this radical difference in the ex-
traction of information from quantum systems. As much as classical and quantum
systems have fundamental differences in their description and behavior, the newly
born quantum information theory appeared to behave fundamentally differently to
its classical counterpart, opening new possibilities in computation and communi-
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cation, and allowing to perform certain tasks which would be otherwise unfeasible
in a purely classical framework. The more prominent examples are quantum com-
puters and quantum cryptography. The firsts, eg via Shor’s quantum factoring
algorithm, provide an exponential speed up with respect to any classical algo-
rithm; the latter guarantees fundamentally secure communication based on the
laws of quantum mechanics. But, apart from practical implications, quantum in-
formation addresses a fundamental understanding of nature. The observation that
our physical description of the world is represented by propositions, and that these
propositions are associated to systems that can be measured to obtain information
from them, puts (quantum) information right in the center of the interpretation
of our world (Zeilinger, 1999). Entanglement is a striking feature of quantum me-
chanics, with a clear interpretation in terms of information, and with no classical
equivalent. It reflects that if a quantum composite system is completely described
by joint properties, one may be left without local knowledge about its subsys-
tems. It can arise when these subsystems, initially separated and encoding local
information, interact with each other. The final state may be represented by joint
properties, and if there has not been information exchange with the environment
this means that some, or all the individual subsystems do not carry information
of their own. This gives rise to stronger correlations than those allowed classically.
In the last decade, technology has reached a point in which quantum effects can
not only be observed, but also controlled, bringing some applications of quantum
information to the real world. Here, quantum communication is maybe the area
which has more mid-term applications. Some examples are the already mentioned
quantum cryptography (Gisin et al., 2002), teleportation (Bennett et al., 1993)
and dense coding (Mattle et al., 1996).

In this thesis we deal with large systems, which are complex and difficult to
describe in a comprehensive way. To study the properties of systems and predict
their behavior, science develops models that try to capture the essence of such
systems and make predictions of their behavior. Typically, we create simple models
based on an ordered structure, so a few parameters suffice. Even if we only base
the model on a collection of entities and the relations between them, without
taking care of the exact nature of such relations, we can already explain some of
the effects of different components. This is the idea behind network models, and
graphs as their mathematical representation, which are very flexible because do
not rely on the nature of interactions—just on their structure. However, these
simple models present some limitations. “La teoria de l’home se superposa a la
realitat com una xarxa: no arriba a més”1, said once Joan Fuster, complaining
that our theories can only grasp of reality the same as a fishing net from the sea.
This reasoning (which Fuster only used metaphorically) can be true in part due
to our tendency to consider regular structures, while real-world systems are often
driven by growing processes, or develop to optimize certain functionalities, that

1“The theory of man overlaps reality like a net: it reaches no more”, Joan Fuster, Diari
1952–1960, p. 429 (translation by M.C.).
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create a complex structure that is neither regular nor completely random.
Complex networks that reproduce this intricate design turned out to be a great

tool for many different disciplines in the study, under the same light, of a wide
range of systems where different parties interact, be they of natural (Jeong et al.,
2001; Scala et al., 2001), social (Watts and Strogatz, 1998; Amaral et al., 2000) or
artificial (Pastor-Satorras et al., 2001; Yook et al., 2002) origin. Complex networks
are defined by few statistical parameters, which however give rise to a non-trivial
structure of complex networks—neither regular nor completely random—that is
the source of many important phenomena not present in regular lattices. For
example, complex networks have an inherent robustness to random errors, main-
taining an important fraction of nodes highly connected (Newman et al., 2001).
Another one, which is at the origin of the popular expression “This is such an
small world”, is that nodes tend to cluster together while keeping short interver-
tex distances even for very large networks (Watts and Strogatz, 1998). All these
effects are often observed in real graphs and have a deep impact on their perfor-
mance. The bottom line is that the structure of these networks strongly affects
their properties, and knowledge of the characteristics of such dependence can be
exploited to control them and enhance their behavior.

In the last decade there has been an important increase of interest in complex
networks (Albert and Barabási, 2002; Dorogovtsev et al., 2008; Newman, 2010),
but they still remain quite unexplored in the quantum setting. Quantum networks
(Cirac et al., 1997; Kimble, 2008), where nodes with (limited) quantum storage
and processing power are coupled through quantum channels, are becoming a fo-
cus of interest in quantum information. The first motivation is to extend the
paradigmatic bipartite quantum communication applications, eg quantum tele-
portation (Bennett et al., 1993) or quantum key distribution (Gisin et al., 2002),
to a multipartite setting, where such bipartite protocols can be accomplished be-
tween arbitrary nodes of the network. The possibility of networks with non-trivial
topologies can give rise to new phenomena and to applications that exploit the
multipartite correlations. Of course, this puts forward a big variety of theoretical
and technological challenges which can be addressed in short term. Indeed the
first experimental steps have already been taken towards a quantum network in a
first realization with two distant nodes that can store and interchange quantum
information in an efficient and reversible way (Ritter et al., 2012). Lastly, such
physical realizations are in principle scalable and hence open the door to perform
highly controllable experiments on many-body phenomena, study multipartite en-
tanglement (Jungnitsch et al., 2011; de Vicente et al., 2012), and could eventually
perform more complex tasks like some implementation of the quantum Google
page rank (Paparo and Martín-Delgado, 2012) or general distributed quantum
computations.

The work contained in this thesis is primarily motivated by the idea that the
interplay between these two fields—quantum information and complex networks—
may give rise to a new understanding and characterization of natural systems.
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Complex networks are of particular importance in communication infrastructures,
as most present telecommunication networks have a complex structure. In the case
of quantum networks, which are the necessary framework for distributed quan-
tum processing and for quantum communication, it is very plausible that future
quantum networks will acquire a complex topology resembling that of existing
networks, or even that methods will be developed to use current infrastructures in
the quantum regime. Not only are quantum complex networks interesting as the
base of communication and distributed applications, but also as a new paradigm
in network science. In the same spirit of quantum information, that considers that
information is embodied in physical systems and therefore described by quan-
tum mechanics, quantum networks arise from networks whose entities and their
relations work in the quantum regime, and may give rise to radically different phe-
nomena. Examples of these are a recent quantum random network model, showing
different critical behavior from its classical equivalent (Perseguers et al., 2010b),
transport modeled by quantum walks (Muelken and Blumen, 2011), search algo-
rithms (Paparo and Martín-Delgado, 2012; Garnerone et al., 2012; Sánchez-Burillo
et al., 2012) or even a model of a quantum social network (Cabello et al., 2011).
One of the objectives of this thesis is thus to explore and draw the attention to
the interaction between these two fields. Joan Fuster ends his at first pessimistic
consideration saying “Per fortuna, la seva ‘pesca’ acostuma a ser fructuosa”2. We
do believe that this interaction will be indeed very productive.

A central task in quantum networks is to devise strategies to distribute entan-
glement among its nodes. This thesis deals with the study of quantum networks
with a complex structure, the implications this structure has in the distribution
of entanglement and how their functioning can be enhanced by operating in the
quantum regime. Linear networks have shown to be useful for long-distance bi-
partite entanglement distribution by means of quantum repeaters (Briegel et al.,
1998). However, the study of entanglement distribution over higher dimensional
networks is in its infancy. The first results show that in some scenarios the network
topology can bring interesting effects like entanglement percolation (Acín et al.,
2007; Perseguers et al., 2008, 2010a; Cuquet and Calsamiglia, 2009, 2011; Lapeyre
Jr. et al., 2009; Broadfoot et al., 2009, 2010b; Wu and Zhu, 2011) that lead to
new approaches to the problem. We will first consider a complex network of bi-
partite states, both pure and mixed, and study the distribution of long-distance
entanglement. Then, we will move to a network with noisy channels and study
the creation and distribution of large, multipartite states. We assume that the
reader is familiar with quantum information theory, and provide only the essen-
tial definitions and concepts—we refer the reader to Nielsen and Chuang (2000).
Instead, we have found more instructive to give an introduction to graph theory
and complex networks.

The thesis is organized as follows. Chapter 2 is devoted to classical complex
2“Fortunately, its ‘catch’ is usually fruitful” (translation by M.C.).
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networks. We introduce graphs as the mathematical representation of networks
and define their basic properties. Then we present several models of networks with
a complex structure. We begin with the models of Gilbert (1959) and Erdős and
Rényi (1959), and use them to define random graphs. These simpler models cannot
reproduce some of the important characteristics of complex networks, so we present
two extensions—the configuration and the small-world model—that address the
problem. As an example of a real-world network with these properties, we present
the Web of Trust, a social network related to a cryptographic protocol. This
network was presented in Cuquet and Calsamiglia (2011). The possibility to use
a network for communication depends on its connectivity. We see how the size of
connected components depends on the structural properties of the network, and
then show how failures in the connections modify these components. This process,
called percolation, is closely related to the distribution of entanglement, so we
present the mathematical tools used to address it. At the end of the Chapter, we
give an overview of the computer implementation of the network models, processes
and transformations that we wrote to perform the numerical simulations contained
in this thesis.

In Chapter 3, we study the distribution of bipartite entanglement in complex
networks. The Chapter is divided in two parts. In the first one, we consider
networks of bipartite pure states. We begin with a brief definition of bipartite en-
tangled states and entanglement transformations. Then, we address the problem
of entanglement distribution as an entanglement percolation process in a complex
network. Within this approach, perfect entanglement is established probabilisti-
cally between two arbitrary nodes. We see that for large networks, the probability
of doing so is a constant strictly greater than zero (and independent of the size
of the network) if the initial amount of entanglement is above a certain critical
value. Quantum mechanics offers here the possibility to change the structure of
the network without need to establish new, “physical” channels. By a proper lo-
cal transformation of the network, the critical entanglement can be decreased and
the probability increased. We apply this transformation to the complex network
models presented in the previous Chapter. Then we turn to the case of a noisy
network of mixed states. We see that for some classes of states, the same approach
of entanglement percolation can be used. For general mixed states, we consider a
limited-path-length entanglement percolation constrained by the amount of noise
in the connections. We see how complex networks still offer a great advantage in
the probability of connecting two nodes. These results were reported in Cuquet
and Calsamiglia (2009, 2011).

In Chapter 4, we move to the multipartite scenario. We study the creation and
distribution of graph states with a structure that mimic the underlying commu-
nication network. Graph states are an important class of multipartite entangled
states. In this case, we use a network of noisy channels, and consider that op-
erations and measurements are also noisy. To correct this noise, entanglement
purification can be used. Standard postselection purification protocols require a
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number of resources that grows exponentially with the size of the system In addi-
tion, the exact structure of a large complex network is often unknown: they are
instead defined by local statistical properties and partial knowledge, which poses
also a restriction in the use of these protocols. To overcome this, we propose a
scheme to distribute and purify small subgraph, which are then merged to repro-
duce the desired state. We compare this approach with two bipartite protocols
that rely on a central station and full knowledge of the network structure. We
show that the fidelity of the generated graphs can be written as the partition
function of a classical disordered spin system (a spin glass), and its decay rate is
the analog of the free energy. Applying the three protocols to a one-dimensional
network and to complex networks, we see that they are all comparable, and in
some cases the proposed subgraph protocol, which needs only local information
of the network, performs even better. The results presented in this Chapter were
reported in Cuquet and Calsamiglia (2012).

Finally, we conclude in Chapter 5 with a summary of our results and an out-
look.



CHAPTER 2

Complex networks

Networks permeate all informational structures. They underlie natural, social and
artificial systems where different parties interface, describing the flow of informa-
tion between them. This ubiquity comes from the versatility of their definition: a
network is a system defined by a set of entities and their binary relations. Differ-
ences in the characteristics of such relations, or interactions, and how they evolve
give growth to different types of structures: regular lattices, completely random
networks or, spanning the range between these two, complex networks, which do
not have a regular structure but neither are completely random. This non-trivial
topology is the source of features like the existence of an important fraction of
highly connected nodes and the tendency of nodes to cluster together that are of-
ten observed in real graphs and have a deep impact in the performance of complex
networks. Complex networks arise in many natural and socioeconomic phenomena:
protein-protein interactions (Jeong et al., 2001) and protein folding (Scala et al.,
2001), neural networks (White et al., 1986) and the human brain (Sporns et al.,
2000), the power-grid (Watts and Strogatz, 1998), friendship networks (Amaral
et al., 2000) and the Internet (Pastor-Satorras et al., 2001; Yook et al., 2002), to
name just a few. Understanding their structural properties is very important as
they crucially affect their functionality. For instance, the topology of a social net-
work affects the spread of information (de Solla Price, 1965) or diseases (Klovdahl
et al., 1994), and the architecture of a computer network determines its robustness
under router failures or intentional attacks (Cohen et al., 2000; Albert et al., 2000;
Cohen et al., 2001).

Networks are naturally represented by graphs: mathematical objects which
consist of two sets, elements of one being the relations between elements of the
other. In this Chapter we introduce some concepts and techniques of graph theory
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In a decision problem, the feasible solutions are not evaluated relative to each other but to an
‘absolut’ criterion: a tour in the TSP either has length ≤ B or not.

MST(D) can be solved in polynomial time: simply solve the optimization variant MST
and compare the result to the parameter B. For the TSP(D) this approach does not help.
In fact we will see in section 2.3.1 that there exists a polynomial algorithm for TSP(D) if
and only if there exists a polynomial algorithm for TSP. It seems as if we cannot learn more
about the gap between tractable and intractable problems by considering decision variants of
optimization problems. So lets look at other decision problems, not derived from optimization
problems.

2.1.1 Eulerian circuits

Our first ‘genuine’ decision problem dates back into the 18th-century, where in the city of
Königsberg (now Kaliningrad) seven bridges crossed the river Pregel and its two arms (Fig. 3).
A popular puzzle of the time asked if it was possible to walk through the city crossing each of
the bridges exactly once and returning home.

f
b

B

D

C

A

c
d
e
g

a

Figure 3: The seven bridges of Königsberg, as drawn in Euler’s paper from 1736 [15] (left) and
represented as a graph (right). In the graph, the riverbanks and islands are condensed
to points (vertices), and each of the bridges is drawn as a line (edge).

It was Leonhard Euler who solved this puzzle in 1736 [15]. First of all Euler recognizes
that for the solution of the problem the only thing that matters is the pattern of interconnections
of the banks and islands–a graph G = (V, E) in modern terms. The graph corresponding to
the puzzle of the Königsberg bridges has 4 vertices for the two banks and the two islands and
7 edges for the bridges (Fig. 3). Euler’s paper on the Königsberg bridges can be regarded as
the birth of graph theory.

To generalize the Königsberg bridges problem we need some terminology from graph
theory [9]. A walk in a graph G = (V, E) is an alternating sequence of vertices v ∈ V and
edges (v, v′) ∈ E,

v1, (v1, v2), v2, (v2, v3), . . . , (vl−1, vl), vl.
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Figure 2.1. The seven bridges of Königsberg. (a) Figure in the original paper by Euler
(1736), obtained from Mertens (2007). Land areas are labeled by upper-case
letters A to D, and bridges by lower-case letters a to g. (b) Graph represen-
tation of the seven bridges. Vertices A to D are represented by dots, edges a
to g by lines.

that will help us describe many properties of networks, and use them for networks
in the quantum regime. We begin in Section 2.1 with the definition of a graph and
its elements, vertices and edges, as well as its local and group properties. Then,
in Section 2.2 we introduce the modelling of complex networks as ensembles of
random graphs, which reproduce some of the most important properties found
in real-world systems: a very short intervertex distance, a degree distribution
that often is scale-free, and a high level of clustering. At the end of the Section
we also present a real-world example of a social network, the Web of Trust of
the OpenPGP classical cryptographic protocol, and some of its properties, like a
scale-free degree distribution and the degree-dependent cluster coefficient. This
real-world network will be later used in Chapter 3 as an example topology on
which distribute bipartite entanglement. In the third Section (2.3) we describe
in detail an important process that takes place in networks: percolation and the
emergence of a large connected component. This process will be later related to the
distribution of bipartite entanglement, and thus we present all the mathematical
tools that have been recently developed in the complex networks field. Finally, in
the last Section of the Chapter (2.4) we summarize the main data structures and
algorithms that we have used in the simulation of classical and quantum complex
networks.

2.1 Networks as graphs
The roots of graph theory can be traced back to the 18th century, when Leonhard
Euler presented his work on the problem of the seven bridges of Königsberg (Euler,
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a

b

c

d

Figure 2.2. A graph with a directed edge (b, a), a multiedge (b, c) and a self-edge (d, d).

1736). This city was crossed by the river Pregolya, which had two islands connected
between them and with the mainland city by seven bridges, as can be seen in 2.1a.
The problem consisted in finding a walking route that crossed through every bridge
exactly once—no more, no less. To solve it, Euler made an abstract reformulation:
the only relevant information in the problem was the list of land areas and the
list of bridges connecting them. This is nothing else than the mathematical object
that is now called a graph, although the term “graph” did not appear until the
second half of the 19th century.

2.1.1 Vertices and edges

In graph-theoretical language, each land area is called a vertex (or node, or point),
and each bridge, an edge (or link, or line). The set of vertices V and the set of
edges E define a graph G, which is the ordered pair of sets G = {V,E}. In this
language, the number of vertices |V | is the order of the graph, and the number of
edges |E|, its size. However, we will use the expression “size of the network” or
“size of the graph” for the number of its nodes, or vertices, N = |V |.

Edges are pairs of elements of V , so if vertices u, v ∈ V are connected by an
edge, then we write (u, v) ∈ E. Edges can be directed, if they can be followed
only in one direction, or undirected, if both directions are valid. In a directed edge
(u, v), the order of its elements is important: the former, u, is the source of the
edge, and the latter, v, is the target, so the edge can only be traversed from u to
v. Undirected edges can be traversed in any direction and then (u, v) = (v, u). We
also speak of directed graphs and undirected graphs if all their edges are directed
or undirected, respectively. There are two special types of edges: self-edges are
edges whose two elements are the same vertex, and multiedges are edges attached
to the same pairs of vertices. When a graph is allowed to have multiedges it is called
a multigraph; the graph that represents the seven bridges problem (depicted in
Figure 2.1b) is a multigraph, where a and b, and c and d are multiedges. However,
they are usually forbidden in common graph models, or can be negligible.
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(a) (b) (c)

(d) (e) (f)

Figure 2.3. Examples of regular graphs, where all vertices have the same degree. (a) The
infinite square lattice, a 4-regular graph. (b) The infinite triangular lattice,
a 6-regular graph. (c) The infinite honeycomb lattice, a 3-regular graph. (d)
The Petersen graph, a 3-regular graph where all shortest paths are at most
of length 2. (e) A ring of 20 vertices, each vertex connected to the 2 vertices
nearest itself; it is a 2-regular graph. It is also called a cycle graph. (f) Same
ring, but each vertex connected to the 4 vertices nearest itself, making it a
4-regular graph.

2.1.2 Degree
In the problem of the seven bridges, Euler rationalized as follows: except at the
beginning and the end of the path, every time one arrives at a vertex through
one of its edges, one has to leave through a different one. Therefore, the number
of edges that are attached to a vertex must always be even, with the possible
exception of two vertices (the start and the end of the path) which must have both
either an odd or an even number of edges. This quantity, the number of edges
attached to a vertex, is called the degree of a vertex. If edges are directed, then
one can differentiate between the incoming and the outgoing degree of a vertex u,
or in- and out-degree for short. The in-degree of u is the number of edges that
have u as a target, and its out-degree is the number of edges that have it as a
source. As it can be seen in Figure 2.1b, in the problem of the seven bridges no
path exists that crosses through every bridge exactly once.

Edges have two ends, which contribute to the degree of the vertices they con-
nect. Hence, the sum of the degrees of an undirected graph is related to the
number of edges it has, M = |E|, by

∑
u∈V ku = 2M . Using the mean degree,

〈k〉 = 1
N

∑
u∈V ku, the number of vertices and edges are related by

〈k〉 = 2M
N

. (2.1)

In a directed graph, the number of edges is equal to the sum of the in-degrees
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(a) (b)

Figure 2.4. (a) Bethe lattice and (b) Cayley tree with coordination number (degree of the
nodes) k = 3. Note that the Cayley tree has boundaries (nodes of degree 1,
called leaves). There are k(k − 1)h−1 leaves in a Cayley tree of depth h. The
Bethe lattice is infinite and does not contain boundaries: all nodes are of the
same degree.

and the sum of the out-degrees. The mean in- and out-degrees are the same, and
equal to half the mean of the total degree. When all the degrees of a graph are the
same and equal to k, the graph is called a k-regular graph. Infinite lattices like
the square, triangular and honeycomb are regular graphs. Figure 2.3 shows these
lattices and examples of other regular graphs.

The Bethe lattice

An interesting regular graph, which is extensively used as a simple toy model, is the
Bethe lattice. The reason for that is that usually it is possible to solve analytically
the statistical mechanics of models defined on it, and that, although being a regular
graph, it shares some important properties with the complex networks that we will
present in Section 2.2, such as a local tree-like structure and the small-world effect
(as long as the degree of its vertices exceeds 2). A Bethe lattice with coordination
number k is defined as an infinite regular graph where every vertex has the same
degree k and is topologically equivalent to all the others, as shown in Figure 2.4a.
Random regular graphs—graphs where all vertices have a fixed degree but edges are
placed randomly, as the one in Figure 2.6—asymptotically approach Bethe lattices,
making them a relevant model where analytical treatment is usually possible. It
is important to note that, although a Bethe lattice has a local tree structure, it
is not a tree. This allows to get rid of the border effects that the leaves (vertices
of degree one) of a tree would produce, because these leaves appear in a number
comparable to the total number of vertices. A graph as the Bethe lattice, but with
border vertices of degree 1, is called a Cayley tree (Figure 2.4b). This tree has
a total of N = 1 + k

[
(k − 1)h − 1

]
vertices, where h = 0, 1, · · · is the depth of

the tree (the distance from the central vertex to a leaf), and k(k − 1)h−1 leaves.
Hence, in the thermodynamic limit h → ∞, the fraction of leaves in the graph is

1
k−1 . The fact that it does not go to zero means that the boundary conditions do



12 Complex networks

a

Figure 2.5. Degree and clustering in a graph withN = 8 andM = 10. The degree of vertex
a is ka = 5. The mean degree of the graph is 〈k〉 = 2M/N = 2.5. The local
clustering coefficient of vertex a is Ca = 1/5. The mean clustering coefficient
of the graph is 〈C〉 = 43/120 ' 0.36. The global clustering coefficient is
C = 3/10 ' 0.33.

not become negligible. For a pedagogical review of the differences between Cayley
trees and Bethe lattices, see for example that of Ostilli (2012).

2.1.3 Clustering
In a network, the degree of a vertex measures the relations between this vertex
and the rest of the network. There is another local quantity, the local clustering
coefficient (Watts and Strogatz, 1998), which takes a step further and measures
the relations between neighbors of a vertex. In an undirected graph, the neighbors
of a vertex of degree ku can be paired in

(ku
2
)
different ways. The local clustering

of u is defined as the fraction of edges that actually exist between its ku neighbors:

Cu = number of edges between neighbors of u
number of possible edges between neighbors of u. (2.2)

The local clustering coefficient of a vertex with degree zero or one is null by defi-
nition. The clustering can also be measured network-wide. The global clustering
coefficient, or simply clustering coefficient, is the relation between the number
of closed triples (groups of three vertices, all connected between them) and the
number of connected triples (groups of three vertices, connected between them by
either two or three edges) in the whole graph. It is usually written as

C = number of closed triples
number of connected triples = 3 number of triangles

number of connected triples , (2.3)

and ranges between 0 and 1. Note that each triangle includes three closed triples,
hence the 3 factor. The global clustering coefficient has not to be confused with
the mean clustering,

〈C〉 = 1
N

∑
u∈V

Cu, (2.4)

which is the average of the local coefficient; in general they take different values. It
has to be kept in mind that if a graph has many vertices with degree zero or one,
it can have a very low mean clustering, even if other vertices are highly clustered.
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b

a

Figure 2.6. In red, one of the shortest paths (of length 6) between a and b. The average
path length of the graph is l ' 2.8.

These clustering coefficients give insight into the transitivity of a network: the
property that says that if a is related to b, and b is related to c, then a is related to
c as well. This property is specially important in social networks, and is commonly
stated by the phrase a friend of my friend is also my friend.

2.1.4 Paths and cycles

Until this point, we have presented graphs and its basic components: vertices and
edges. But the rich variety of network phenomena appear when one considers also
this basic elements as a group, and the patterns they give rise to. Hence, we now
move to quantities that depend of groups of vertices.

In Euler’s solution of the seven bridges problem, we already introduced the idea
of a path. Formally put, a path from u0 to ul is a sequence of vertices u0, u1, · · · , ul
such that every pair (ui, ui+1) is an element of E for i = 0, 1, . . . , l − 1. If the
starting and ending vertices are the same, then the path is said to be closed and
it is called a cycle. The length of a path is the number of edges in it. A distance
lu,v between nodes u and v can be defined as the length of the smallest path that
joins these two nodes (or ∞ if the two nodes are not connected by any path).
This distance is called intervertex distance, minimum path length or simply path
length, if by context it does not lead to confusion with the length of an arbitrary
(not minimal) path between u and v. The neighborhood of a vertex u is then
the set of vertices at distance 1 from u, or equivalently Nu = {v : (u, v) ∈ E}.
We also presented the degree of a vertex, ku. If a vertex has degree equal to zero
it is called an isolated vertex; if it has degree equal to one, then the vertex is
called a leaf. When neither self-edges nor multiedges are allowed, the degree of a
vertex is equal to the number of its neighbors, ku = |Nu|. If the graph is directed,
the incoming and outgoing neighborhoods of u are N (in)

u = {v : (v, u) ∈ E} and
N (out)
u = {v : (u, v) ∈ E}, respectively.
Along with the degree and the clustering coefficient, the average path length is

an important measure of a network. In short, a small average path length tells us if
nodes in the network are not too far one from the other, so they can communicate
fast and easily. It is formally defined as the average of the minimum path length
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(a) (b) (c) (d)

Figure 2.7. Some graph examples. (a) Empty graph. (b) Complete graph. (c) Star.
(d) Cycle.

between all possible pairs of vertices,

lav = 1
N(N − 1)

∑
u,v

lu,v. (2.5)

By means of the average path length, two classes of graphs can be differenti-
ated: small-world and large-world networks. In a small-world network, growing
the network while keeping the average degree fixed results in an average path
length that increases at most logarithmically with the size of the network. If it
increases faster than that, then the network is a large-world. This classification
differentiates between regular lattices and networks with a complex topology. In
a d-dimensional lattice, the average path length scales as l ∼ N1/d. On the con-
trary, complex networks are typically small-worlds. This property is known as the
small-world effect (De Sola Pool and Kochen, 1978; Milgram, 1967) and appears
in many real-world communication networks such as the Internet. We will come
back to this effect in the next Section 2.2.

2.1.5 Components
A connected component, or cluster, is a subgraph where any two vertices are
connected by at least one path of edges and to which no more vertices can be
added without losing this property. If the graph is directed, a strongly connected
component is the subgraph where pairs of vertices are mutually connected by a
directed path. If the direction of the edges is ignored, then the component is
weakly connected. Depending on whether a graph has only one or more than one
connected component, it is called connected or disconnected, respectively. A graph
can have many components of different sizes, and one may ask which is the biggest
one and what size it has. When this size is of the order of the size of the whole
graph, this component is called the giant connected component. This concept is
closely related to that of a percolating cluster. We will come to that in Section 2.3.

An empty graph is a graph where all vertices are isolated (Figure 2.7a). On
the other hand, a graph where any pair of vertices is connected by an edge is
a complete graph (Figure 2.7b). Graphs with no cycles and a single connected
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(a) (b) (c) (d)

Figure 2.8. Graph coloring. (a) A tree is always 2-colorable. (b) The square lattice is also
2-colorable. (c) The triangular lattice is 3-colorable, but not 2-colorable. (d)
A graph with clustering is not 2-colorable.

component are called trees, and are usually simpler to analyse than other graphs.
Removing an edge from a tree creates a forest, which is a graph with no cycles but
more than one connected component. A one-dimensional chain is a tree. Another
type of tree is the star: a graph with a central node of degree k, connected to k
leaves (Figure 2.7c).

2.1.6 Coloring
The problem of coloring a graph comes originally from the problem of coloring a
map. It was conjectured in 1852 that four colors were sufficient to color a map
in such a way that no adjacent regions had the same color. The author of the
conjecture was Francis Guthrie, who observed that four colors were sufficient to
color the map of counties of England. However, theorem was not proved until 1976
by Appel and Haken (1977), being the first theorem proved with the assistance of
a computer.

Formally put, a vertex coloring of a graph is a special labelling of its vertices
(in this case, the labels are called colors) such that no adjacent vertices share
the same color. Of course, the coloring can also be applied to other elements,
such as edges. Commonly, when no specification is made, a coloring of a graph
is understood as its vertex coloring. A graph that can be colored with k colors is
called k-colorable, and the smallest k for a graph is its chromatic number. Trees
are always 2-colorable (Figure 2.8a), and also the square lattice (Figure 2.8b), but
not the triangular (Figure 2.8c). More generally, graphs with clustering different
from zero are not 2-colorable, as the two neighbors of a node that are also neighbors
between them cannot share the same color (Figure 2.8d). In general, it is hard to
decide if a graph is k-colorable—in fact, it is NP-complete if k ≥ 3.

Among many applications of graph coloring, it is important in the purification
of graph states, that will be used in Chapter 4. Initially, purification protocols
for graph states were restricted to 2-colorable graphs1 (Dür et al., 2003; Aschauer

1Which anyway include important states such as the Greenberger-Horne-Zeilinger states
(Greenberger et al., 1989) and cluster states (Briegel and Raussendorf, 2001).
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et al., 2005), but were then extended to general colors (Kruszynska et al., 2006).

2.2 Network models
After the work of Euler (1736) on the seven bridges problem, where the term graph
does not appear but that is considered the first work in this field, graph theory
studied small and rather regular graphs. It was not until the mid 20th century
that larger and more complex networks began to interest the scientific community.
A broad range of disciplines studied the elements and relations of the systems
in their field as networks. This research was pioneered by social sciences, where
data acquisition allowed to reconstruct the first complex networks, such as that of
relations between friends or coworkers2. A very important drawback with these
experimental data was the difficulty to acquire large and reliable data. An early
exception was the network formed by citations between scientific publications (de
Solla Price, 1965), which provided larger and more accurate data. In any case,
important properties of these networks were already revealed. Perhaps the best
known example is Milgram’s small world experiment (Milgram, 1967; Travers and
Milgram, 1969), popularized by the phrase six degrees of separation, that suggested
that society is a network with surprisingly short path lengths. In the experiment,
participants were given a letter and a target recipient in a distant city, and asked
to send the letter directly to the recipient, if they knew her. In case they did
not, they had to write down their own name and send it with the letter to a
personal acquaintance who they thought could knew the recipient. Averaging over
the letters that arrived at its destination, Milgram concluded that the average
path length was around six. In the last decade, this experiment was repeated by
Dodds et al. (2003) using email with very similar results.

To study the functionality and properties of complex networks, and how they
are affected by the specific structure of the network, one can try to take the com-
plete, exact description of the system and simply simulate its behavior. However,
in many cases this is a formidable task, and then it is essential to use a model
of the system. The model should include the main structural properties of the
system—such as the mean degree, the degree distribution, or the clustering (New-
man, 2002b)—, and the possibility to tune them, without giving explicitly its full
topology. The reason for this simplification can be that maybe the structure is
too complex to describe in its full generality, or perhaps even more commonly that
there is no complete knowledge of the system, but instead only access to some
statistical properties. In addition, this allows to control the structural parame-
ters of the network and study their effect. Another important motivation is the
usual necessity, or interest, to study the thermodynamical limit N → ∞ of these
networks, which would otherwise be in many cases impossible or very challenging.

2See, for example, references in Catanzaro (2008).
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Figure 2.9. The 8 graphs of the Gilbert model N = 3 ensemble. Colons separate the
Erdős-Rényi ensembles for N = 3 and M = 0, 1, 2, 3, respectively.

Complex network models provide a consistent way to define networks in this limit,
and tools can be developed to compute relevant asymptotic quantities.

Such models fix some specific quantities of the network, but are completely
random in all other aspects. The first and simplest of these models, that are
known as random graphs, are due to Solomonoff and Rapoport (1951), Gilbert
(1959) and Erdős and Rényi (1959, 1960), who posed the foundations of modern
complex network theory. However, results from both Milgram and de Solla Price
showed discrepancies when confronted to the simple random models of Gilbert
and Erdős and Rényi (eg in the expected average path length, or the level of
clustering), but the difficulty to acquire large amounts of reliable data stopped from
significant advance in the design of more accurate models. This fact changed with
the emergence of Internet and computerization of data acquisition, that boosted
the advance in the understanding of the structure and function of complex networks
(Albert and Barabási, 2002; Bornholdt and Schuster, 2003; Dorogovtsev et al.,
2008; Newman, 2010). These new datasets allowed for a more systematic approach
to networks, and revealed the importance of basic properties such as the degree
distribution of the network and its clustering. It also served as a motivation to
develop models that tried to reproduce the formation mechanisms that underly
these networks, to see which properties emerge, rather than statistically describing
the system.

In this Section we introduce the Gilbert and Erdős-Rényi random graph models,
which already encode some of the qualitative behavior of real-world systems such
as the small-world effect. Then we present the configuration model, that extends
the previous models to reproduce graphs with a general degree distribution, and
the Watts-Strogatz model, with a high level of clustering not present in the other
models. Other important models that have been thoroughly studied in the litera-
ture include preferential attachment like the de Solla Price model (de Solla Price,
1965) and the Barabási-Albert model (Barabási, 1999), the hidden variables model
(Goh et al., 2001) and exponential random graphs (Holland and Leinhardt, 1981).

2.2.1 Random graphs
A random graph is a statistical ensemble G of graphs, with a probability P (G)
assigned to every graph G in the ensemble. The two simplest and most commonly
studied models of random graphs are those of Gilbert (1959) and Erdős and Rényi
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(1959). They are commonly called classical random graphs or the Erdős-Rényi
graph and treated as the same model, because they are asymptotically equivalent
in the thermodynamical limit of infinite vertices, N →∞.

The Erdős-Rényi model (Erdős and Rényi, 1959) is the ensemble of graphs
of N vertices and M edges, which are chosen uniformly at random among the(N

2
)
pairs of vertices. Hence, the ensemble contains

((N2 )
M

)
elements. It is maybe

the paradigmatic random graph because it is maximally random under a single
constraint—that the average degree of the graph is fixed. The Gilbert model
(Gilbert, 1959), which was already studied by Solomonoff and Rapoport (1951), is
the ensemble of graphs of N vertices, constructed by adding an edge between each
of the

(N
2
)
pairs of vertices with some probability p. The ensemble contains 2(N2 )

graphs, each appearing with probability pM (1 − p)(
N
2 )−M , where M is again the

number of edges. The 8 graphs of the N = 3 ensemble are depicted in Figure 2.9.
The probability of obtaining a graph with M edges is((N

2
)

M

)
pM (1− p)(

N
2 )−M , (2.6)

which is the reason for this model being also called the Binomial model. The
expected value of edges is

(N
2
)
p. In statistical mechanics terminology, the Erdős-

Rényi model is the analog of the canonical ensemble, and the number of edges M
plays the role of the number of particles, while the Gilbert model is that of the
grand canonical ensemble3. The analysis of the Gilbert model is technically easier
than that of the Erdős-Rényi, but for simulations it is generally more convenient
to create instances of the latter model. This is because if p is small enough (that
is, if the graph is dense, as we will explain in a moment), one needs to generate
only O(N) random edges, instead of checking the existence of all O(N2) possible
edges. Unless explicitly differentiated, from now on we will use the same term
Erdős-Rényi for these two models.

Since a random graph is an ensemble of many single instances, it can happen
that some of these instances have a given structural property while others do not.
For this reason, one is usually interested in “typical” structures in the ensemble.
Structural properties are “typical” if the probability of finding them in a given
instance tends to 1 for N → ∞, and one then says that almost all graphs in the
ensemble have this property. Quite surprisingly, Erdős and Rényi (1959, 1960)
observed that for a number of these properties, there exists a threshold parameter
(or more exactly, a threshold function of N) below which almost no graph has the
property while above which almost all have it.

For some property O of a random graph, we can also calculate its average over
the ensemble,

〈O〉G =
∑
G∈G

P (G)O(G), (2.7)

3See, for example, Dorogovtsev (2010, pp. 9–10).
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where O(G) is the value of the property in the graph realization G. In real sce-
narios, it is usually impractical or even impossible to reconstruct several graph
realizations. Hence, in most real scenarios, but also in many theoretical models,
only a single, large graph is studied. Some of the properties of the graph are self-
averaging, meaning that for large systems (in the limit N → ∞) a property of a
given graph realization G is the same as the average over different realizations of
G ∈ G. This happens when the property O is sharply peaked in its average value,
and the graph is large enough to make fluctuations around the average vanish.
Self-averaging is a very common feature (or working assumption, as we will later
discuss) in disordered systems such as spin glasses (Mézard et al., 1987, pp. 7–8)
and neural networks (Amit, 1989, pp. 187–189).

One of the basic properties of random graphs is their degree distribution, pk. It
is the probability that a randomly chosen vertex has degree k,

pk =
〈
nk(G)
N(G)

〉
G

, (2.8)

averaged over the random graph. Here, nk(G) is the number of vertices with
degree k and N(G) the total number of vertices of the graph G. As we previously
mentioned, sometimes a single, large network instance is studied and one then
counts the frequency that a vertex has degree k. Although its proper name would
be degree sequence, this is commonly referred also as its degree distribution, and
the self-averaging assumption is made so it equals pk in the limit of large networks.

However, self-averaging is not necessarily a given, and it should be checked
for every particular model. In this regard, the simple example provided in the
appendix of Bialas and Oles (2008) is very illustrative. Consider G(N, k), the
ensemble of all k-regular graphs withN vertices (ie where all vertices have the same
degree k, and their degree distribution is pq = δq,k), and define a new ensemble
G(N) as the union of all G(N, k),

G(N) =
⋃
k

G(N, k), (2.9)

with probability
P (G) = wk

|G(N, k)| (2.10)

assigned to every graph G ∈ G(N). Here |G(N, k)| is the number of graphs in the
ensemble G(N, k) and wk is an arbitrary probability distribution, with

∑
k wk = 1.

One can see that the degree distribution is equal to wk:

pq =
〈
nq(G)
N(G)

〉
G

=
∑

G∈G(N)

nq
N
P (G) =

∑
k

∑
G∈G(N,k)

wkδk,q
|G(N, k) =

∑
k

wkδk,q = wq.

(2.11)
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This distribution is clearly not self-averaging, as single instances of a graph should
be defined by a single degree k, not by an (arbitrary) wq. That the self-averaging
does not hold can be seen more rigorously by computing the variance of pq:

Var pq =
∑

G∈G(N)

(
nq
N
− wq

)2
P (G) =

∑
k

∑
G∈G(N,k)

wk (δk,q − wq)2

|G(N, k)|

=
∑
k

wk (δk,q − wq)2 = wq − 2w2
q + w2

q

∑
k

wk = wq − w2
q . (2.12)

This quantity does not vanish on the limit N →∞, explaining that pq (the degree
distribution of the whole ensemble) is not a good description of a single graph.
For a discussion of self-average in real-world networks, see for example the study
of Serrano et al. (2007) of the World Wide Web. As is commonly done, in this
thesis we will consider self-averaging as a working hypothesis and later confirm it
with numerical results.

In the Gilbert model, a vertex has degree k according to the binomial distri-
bution,

pk =
(
N − 1
k

)
pk(1− p)N−1−k, (2.13)

and the mean degree is 〈k〉 = p(N − 1). Usually we are interested in very large
networks. In this case, a dense graph is that for which the number of edges is
close to the maximum

(N
2
)
, ie the mean is of the order of N . On the contrary, in a

sparse graph, 〈k〉 /N → 0 as N →∞ and 〈k〉 tends to a constant. Setting c ≡ 〈k〉,
the degree distribution of a sparse graph becomes

pk = ck

k! e
−c. (2.14)

Hence, in the limit of large N , where the Gilbert and Erdős-Rényi models coin-
cide, they have a Poisson degree distribution. These random graph models are
completely characterized by this distribution. In fact, the only constraint imposed
is that their mean degree is equal to c, and this is the reason why they are also
called maximally random graphs.

The degree distribution is indeed one of the most fundamental properties of a
random graph, and many of its features can be derived from it. As an example,
from the Poisson degree distribution of the Erdős-Rényi model, one can easily
obtain the logarithmic scaling of the average path length with respect to the size
of the network—that is, the small-world effect introduced in Section 2.1.4. This
is done by the following reasoning. Starting from a randomly selected vertex,
the number of first-neighbors (vertices at distance 1) is on average c. These first-
neighbors have on average c new neighbors each, so the number of first- and second-
neighbors of the initial vertex is c+c2. To distance l, the total number of neighbors
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is c+ c2 + · · ·+ cl. The average path length lav is approximately that at which the
total number of neighbors up to that distance is equal to the size of the network,

1 +
lav∑
l=1

cl = N. (2.15)

If we consider c� 1, this expression simplifies to clav = N , ie

lav = logN
log c . (2.16)

This is an approximation in two senses: we have neglected the possibility that there
are loops that go back to vertices that are already counted, and we have assumed
that the full network (N vertices) can be reached. Nevertheless, it gives a good
estimate of the scaling of lav and shows the small-world effect in the Erdős-Rényi
model.

However, as we already pointed out at the beginning of this Section, when the
first real-world complex networks were confronted to this simple model, signifi-
cant differences arose even in their degree distributions. In the citation network
of de Solla Price (1965), for example, it was already observed that the number
of citations—the degree—followed a power-law distribution. We illustrate this be-
havior in Figure 2.10, where we confront the Poisson degree distribution of Eq. 2.14
and a power-law distribution with another real-world network that we will later
introduce in Section 2.2.4. Networks with such degree distributions are called scale-
free networks and have many vertices of low degree but also a small number of very
high-degree vertices, called hubs. This observation is, in fact, extremely common
in many natural, social and artificial systems, and triggered the generalization of
the Poisson random graph to more general degree distributions.

2.2.2 The configuration model
The configuration model (Bender and Canfield, 1978; Bollobás, 1980) is a way
to obtain random graphs with any degree distribution. More precisely, it is the
ensemble of graphs with a particular degree sequence: the number of vertices with
a specific degree is fixed, instead of having a degree according to a probability
distribution. Since the degree sequence is fixed, so it is the number of edges,
M = 1

2
∑
u ku. In a way, this makes the configuration model a generalization of

the Erdős-Rényi model, with fixed M .
The algorithm to create a graph instance is the following. Start with N isolated

vertices, and assign a random integer ku to each of them, according to the desired
degree distribution pk. Each vertex u can be thought as having ku “stubs”, or
half-edges. Then, pairs of stubs are randomly selected and joined between them to
create theM edges. Two considerations are in order. First, not all degree sequences
are possible, and to successfully create the graph the sum of degrees must be even,



22 Complex networks

æ

æ

æ

æ
æ
æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

0 10 15 205
k

0.1

0.2

0.3

0.4

pk

Figure 2.10. Comparison between a Poisson c = 7.54 (blue) and a scale-free τ ≈ 1.23,
κ ≈ 23.8 (red) degree distributions pk, given by Eqs. 2.14 and 2.19. The
parameters of the degree distributions have been set to fit the real-world
network described in Section 2.2.4, to which the black dots correspond. The
power-law degree distribution has a long tail that extends far beyond the
degree k = 20 shown in the plot.

∑
u ku = 2M . Second, the model allows the creation of self-edges and multiedges,

so the ensemble consists of all the multigraphs with a specific degree sequence,
each equiprobable. This is generally not a problem, as the number of self-edges
or multiedges typically remains constant as N grows. When needed, one can
also explicitly forbid the creation of self-edges or multiedges in the random edge
creation process.

With this method, any degree distribution can be modeled. As we already
mentioned, real-world networks do not have the Poisson degree distribution of the
Erdős-Rényi model, but rather exhibit a power-law (scale-free) degree distribution,

pk = Ck−τ , (2.17)

with τ a positive constant and C a normalization factor. Such degree distributions
are characterized by a relatively important number of vertices with a degree much
greater than the average. In heavy-tailed networks with these degree distributions,
a cutoff in the maximum degree naturally appears in scenarios where very high
degrees cannot exist due to, for example, targeted attacks, physical constraints,
saturation effects, or simply the finiteness of the network size. To consider this,
one can directly include a sharp cutoff,

pk =
{
Ck−τ for k ≤ kc
0 for k > kc

, (2.18)

or instead consider scale-free degree distributions with an exponential cutoff,

pk = Ck−τe−k/κ. (2.19)
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(Note that the normalization factor is different for every distribution.) The pure
scale-free behavior can still be recovered by taking the κ→∞ limit. We will later
see that the cutoff κ strongly affects the network properties.

Unlike the Erdős-Rényi, the configuration model succeeds in reproducing the de-
gree distribution of real-world networks. However, neither of them reproduce an-
other very basic property: clustering. Indeed, in these models, the probability that
any two vertices are neighbors is the same—independently of whether they share
a common neighbor or not. Hence, for the Gilbert model the clustering coefficient
is

〈C〉 = p = c

N − 1 , (2.20)

which tends to zero for large networks. For a general uncorrelated degree distri-
bution it is (Newman, 2010, p. 449)

〈C〉 = 1
N

(〈
k2〉− 〈k〉)2
〈k〉3

. (2.21)

For networks of finite 〈k〉 and
〈
k2〉, this quantity tends to zero in the limit of

large network size N → ∞. On the contrary, typical values of 〈C〉 in real-world
networks are quite high: between 0.18 and 0.3 in the Internet at the domain level
(Pastor-Satorras et al., 2001; Yook et al., 2002), and in the range 0.066–0.76 for
different scientific collaboration networks (Newman, 2001a,b,c,d; Barabási et al.,
2002). A large list of networks and their clustering coefficients, together with other
properties, can be found in Newman (2010, p. 237).

Several algorithms and models have been proposed to produce random graphs
with clustering; see, for example, that of Serrano and Boguñá (2005, 2006a,b).
The configuration model itself was recently generalized to incorporate clustering
(Newman, 2009) in an analytically solvable model. One of the first and more pop-
ular models, however, is the so-called “small-world model” (Watts and Strogatz,
1998), a model that spans between regular lattices and maximally random graphs.

2.2.3 Small worlds
Aside from regular lattices, which have a high level of clustering, there are also
many real-world networks with this property. This is especially true for social
networks, but also for communication and biological networks. Watts and Strogatz
(1998) introduced, in a paper that has become very influential, the Small-world
model4, in an attempt to find a model that combined a significant level of clustering
4One should not confuse the small-world effect of very short average path lengths, which
is common in complex networks, and the small-world model, that is the name of the
model introduced by Watts and Strogatz (1998). To avoid confusion, we usually refer
to the latter as the Watts-Strogatz model, but the original name of Small world is also
very common in the literature and will sometimes appear here. For an (early) review of
several small-world models, see for example Newman (2000).
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Figure 2.11. Base lattice for the Watts-Strogatz model. All vertices are connected to their
2k nearest vertices.

(a) Base lattice. (b) Rewired WS. (c) Added WS.

Figure 2.12. Watts-Strogatz (WS) model, with N = 20 and k = 2. (a) The base lattice
of Figure 2.11, shaped as a ring (with periodic boundary conditions). All
vertices are connected to their 2k nearest vertices, and there is a total of
kN edges. (b) In the rewired WS, edges of the base lattices are rewired
to a random vertex with probability β. The total number of edges remains
constant, independently of β. (c) In the added WS, with probability β a new
random edge is added for each of the kN edges of the base lattice. In average,
the total number of added edges is βkN .

as well as a very short average path length, as most biological, technological and
social networks do. This model is a random graph with an ordered local structure
and a high level of clustering but still with a surprisingly low average path length.
Watts and Strogatz observed that regular lattices usually have a high clustering
but suffer the lack of very large average path length, while in the Erdős-Rényi and
the configuration model, as we have already seen, the clustering coefficient tends
to 0 for large networks, but the average path length grows only logarithmically.
Their intermediate model, which have later been called Watts-Strogatz model
so it is not confused with the small-world property common of most complex
networks, starts from a regular network and rewires some of the edges to introduce
randomness. These rewired edges act as shortcuts between highly connected parts
of the network, so the average path length is strongly decreased while a high level
of clustering is maintained.

The model is constructed as follows. It starts with a one-dimensional regular
base lattice of N vertices. Each vertex has 2k edges that connect it to its nearest
vertices (see Figure 2.11), so there is a total of kN edges. It is common to consider
periodic boundary conditions, so the base lattice takes the shape of a ring as in
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Figure 2.13. Network of all keys in the OpenPGP Web of Trust at a distance three or
less from a key (bigger, in red) of the author of this thesis, and signatures
between them.

Figure 2.12a. To decrease the average path length and introduce randomness,
there are two slightly different versions of the model. In the original, depicted
in Figure 2.12b, each edge in the base lattice is rewired to a random vertex with
probability β. We call this the rewired Watts-Strogatz model, or rewired WS for
short. In the second version (Figure 2.12c), for each edge in the base lattice we
add a new random edge with probability β. We call these new edges shortcuts,
and the version added Watts-Strogatz model, or added WS. Both versions have
the same qualitative behavior, but for analytical treatment it may be convenient
to use the latter (Moore and Newman, 2000).

2.2.4 A real-world example: the OpenPGP Web of Trust
As an example of a real-world network, we present here the OpenPGPWeb of Trust
that we will use later in Chapter 3. The Web of Trust (see Figure 2.13 for a partial
view) is a social network representing the trust between OpenPGP users, and is
conceived to solve the authentication problem. Without going into much detail,
OpenPGP is a standard encryption protocol for securing email communications
using public key cryptography (Schneier, 1996). It is derived from PGP (Pretty
Good Privacy), a computer program created by Phil Zimmerman in 1991. In
public key protocols, users have a pair of keys: one which is public and accessible
by everybody, and a private one which is used for decryption. If the sender user
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Figure 2.14. Web of Trust of the classical cryptographic protocol OpenPGP. (a) Log-log
plot of the degree sequence of the Web of Trust, as described in the text. nk

is the number of vertices of degree k, and follows a power law. (b) Log-log
plot of the mean clustering coefficient for a specific degree, 〈C(k)〉. The size
of the network is N = 38 550 and the number of edges M = 145 388.

(let us call her Alice) wants to send a secure message to the receiver (Bob), she
has to use Bob’s public key to encrypt it. The authentication problem arises when
Alice cannot verify if the key she is using is really owned by Bob. A solution to
this problem is the Web of Trust, in which every user signs a public key if she
trusts it. This process generates a directed network, where nodes correspond to
public keys and a directed edge from key A to B means that the owner of key A
has trusted and signed key B. To trust a key, usually a user has to meet with the
key owner and check that he is really who he claims to be. This social model is
relevant to quantum communication in the sense that at this point the two users
could use the interaction to create some bipartite entanglement between them,
and then separate, each keeping one of the parts. By repeatedly doing so between
different pairs of users, as in the Web of Trust, a bipartite quantum network would
be created.

Here we use the strongly connected component of the Web of Trust obtained
from the Swiss keyserver5 as of May 25, 2010, containing 41 459 keys and 424 577
signatures. In Chapter 3 we will study entanglement distribution in undirected
networks. Hence, we consider only bidirectional edges, corresponding to users who
mutually signed their keys. This leaves an undirected graph with 38 550 keys and
145 388 two-way signatures (Cuquet and Calsamiglia, 2011). The degree sequence
(Figure 2.14a) is a power law, with mean degree 〈k〉 = 7.54 and

〈
k2〉 = 501.

A fit of the degree sequence to the power-law distribution with an exponential
cutoff of Eq. 2.19 gives τ ≈ 1.23 and κ ≈ 23.8. As shown in Figure 2.10 on
page 22, this distribution reproduces quite well the degree sequence of the Web of
5The Swiss Keyserver used to be accessible at http://wwwkeys.ch.pgp.net:11371/pks/,
which now seems to be defunct. Public data from 2005 to 2012 is available at http:
//www.lysator.liu.se/~jc/wotsap/index.html.

http://wwwkeys.ch.pgp.net:11371/pks/
http://www.lysator.liu.se/~jc/wotsap/index.html
http://www.lysator.liu.se/~jc/wotsap/index.html
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Trust. However, the average clustering is 〈C〉 = 0.290, high compared to that of
a random graph of the same size and mean degree, 1.95 · 10−4 (see Eq. 2.20), and
even to the one corresponding to the configuration model, 1.65·10−3 (see Eq. 2.21).
Figure 2.14b shows the spectrum of the local clustering coefficient 〈C(k)〉, where
the average is performed over nodes with the same degree:

〈C(k)〉 =
∑

u∈V :ku=k
Cu. (2.22)

The scaling law of the clustering coefficient C(k) for high degrees suggests that
this network has a hierarchical structure (Dorogovtsev et al., 2002; Ravasz and
Barabási, 2003).

2.3 Percolation on complex networks
One of the primary features of networks is the existence, or not, of a giant con-
nected component whose size is of the order of the size of the network, N . In
general, a network can be composed of many disconnected components, each of
a size that is small compared to N , or have an extensive component that in the
asymptotic limit of very large networks has a size that is a finite fraction, S, of
the total network size. That the network is in one of these two possible regimes
depends on its structural parameters. For example, in the Erdős-Rényi model
(Erdős and Rényi, 1959), for a mean degree smaller than unity, c < 1, there are
only small components, the biggest of them of order logN . Instead, for c > 1,
the biggest component is of size SN , S being a positive number independent of
N . When the size of this biggest component is of order N it is called the giant
connected component. The fraction S of nodes in the network that belong to
the biggest component—from now on, we will call S simply the size of the giant
component—is in fact the order parameter of a second order phase transition. In
the thermodynamic limit, the critical point of this phase transition (in the case of
the Erdős-Rényi model, c = 1, with a biggest component of order N2/3), marks
the transition from a phase with S = 0 to a phase with S > 0.

This concept is closely related to that of a percolating cluster. Percolation
theory (Grimmett, 1989; Stauffer and Aharony, 1994) began as the study of how
fluids filter through a porous medium, just like petroleum moves through rocks.
In the last decades, it has become the subject of applied mathematics and graph
theory, and found applications in a broad number of areas such as physics, material
science, geography, communication technologies, as well as medical, biological and
social sciences. In bond percolation, edges in a network can be occupied with a
given probability, therefore connecting their end vertices, or empty, which means
that the edge is not useful to connect directly the two nodes (which can, how-
ever, still be connected by a different, longest path). Similarly, in site percolation,
vertices are the elements which can be occupied or empty with some probability.
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Both processes give rise to similar phenomena. In particular, there exists a per-
colation threshold in the occupation probability: below a critical probability, all
connected components are of finite size, while above it there exist only one giant
connected component. In terms of percolation theory, which initiated as the study
of the components—called clusters—in a regular lattice, the equivalent of the gi-
ant component is a percolating cluster that extends from one end to the other
of the lattice. As before, this threshold is the critical point of a phase transition
(with order parameter S), and can be marked by the divergence of the average
component size, which acts as a susceptibility in a magnetic material.

Percolation theory has direct applications in communicating over a network.
A network may have a giant component by itself or even be completely connected,
but sometimes these connections can fail, eg due to some noise, random failures or
directed attacks. To be able to communicate in a network like this, two vertices
need to establish a path of occupied (reliable) edges between them. In other words,
they must belong to the same connected component. For very large networks, the
relative size of the components tend to zero, except for the giant component, in
the case it exists. Therefore, in the large network limit two vertices are connected
if they both belong to the giant connected component—because other components
have a negligible size. This happens with probability S2. Of course, this probabil-
ity is zero below the percolation threshold. Hence, solving this threshold and the
size of the giant component as a function of the occupancy probability is crucial
in determining the ability of a network to support communication.

Let us here remark the difference between the two ideas that we have intro-
duced. The first one is related to structural properties of a network: the size and
the number of its components. The second, on the other hand, is a process on such
networks, which may have originally a giant connected component or be already
disconnected. Of course, they are related, and the first can be viewed as a kind of
percolation process in the complete graph.

The percolation threshold and the size of the giant connected component, as
well as many other properties, strongly depend on the basic structure of the net-
work (Moore and Newman, 2000; Callaway et al., 2000; Newman et al., 2001;
Dorogovtsev et al., 2008) as well as on degree-degree correlations (Boguñá et al.,
2003; Goltsev et al., 2008) and clustering (Newman, 2009). Therefore, a change in
the structure of a network can affect its ability to communicate information. For
example, the scale-free topology of Internet makes it resilient against the failure
of random nodes (Cohen et al., 2000), but not against targeted attacks directed
to its major hubs (Albert et al., 2000; Cohen et al., 2001). This relation between
the structure of the network and the communication over it can be also exploited
to benefit the earlier appearance of the giant cluster and to find architectures that
allow communication even in the presence of noise. For regular lattices, only a few
analytical results are known, mainly regarding the percolation threshold and criti-
cal exponents of the phase transition (Grimmett, 1989), but not for the size of the
giant component. Hence, one usually turns to numerical simulations to explore
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(a) pk (b) rk (c) pi,j (d) ipi,j/ 〈i〉

Figure 2.15. (a) Degree probability pk (in this case, a node with degree 3). (b) Excess
degree probability rk (here, a node with excess degree 3: the neighbor used
to arrive at the node is not counted). (c) Directed (in- and out-) degree prob-
ability pi,j . (d) Directed (in- and out-) degree probability ipi,j/ 〈i〉, arriving
from an edge (in this case, the in- and out-degrees are both 2).

these systems (Newman and Ziff, 2000). On the contrary, and despite the ap-
parent intricate structure of complex networks, basic quantities like the threshold
and the giant component size can be computed exactly for many different models,
including the ones presented in Section 2.2.

In this Section we review the component structure and the main results of
percolation in complex networks, and introduce the mathematical methods that
are used to obtain them. This will come in handy in Chapter 3, where we study
the distribution of bipartite entanglement in complex networks, a process that is
closely related to percolation. The mathematical tools include primarily proba-
bility generating functions. Apart from its key role in the analytical treatment
of percolation, they are a powerful and versatile tool that will also be used in
Chapter 4, not only in the framework of complex networks but also to solve other
combinatoric problems.

2.3.1 Components in uncorrelated networks
Networks with uncorrelated degree distributions

In Section 2.2.1, we introduced the degree distribution (Eq. 2.8) of a random graph,
pk. As shown in Figure 2.15a, it states what is the probability that, picking up a
random vertex, it has degree k. There is another probability that, although related
to pk, does not coincide with it. Suppose that, instead of randomly selecting a
vertex, we take an edge at random and follow it to one of its end vertices. The
probability that this vertex has degree k depends on pk and on its own degree, and
can be easily calculated using the stubs picture of the configuration model. If we
pick up one of the stubs at random, it will be attached to a specific vertex of degree
k with probability k/2M . Since there are Npk of such vertices, the probability
that the stub connects to any vertex of degree k is

k

2MNpk = kpk
〈k〉

. (2.23)
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This probability reflects that it is more likely to arrive at a vertex with higher
degree (and that the probability of arriving at an isolated vertex through an edge
is, of course, zero). Using Eq. 2.23, we can easily calculate the average degree of a
neighbor as the sum of k times the probability that the neighbor has degree k:∑

k

k
kpk
〈k〉

=
〈
k2〉
〈k〉

. (2.24)

This average is only equal to 〈k〉 if all nodes are of the same degree, and larger
otherwise.

In general, the degrees ku and kv of the two ends of a random edge (u, v) can
be correlated. Uncorrelated networks are networks where the probability pku,kv of
this event can be factorized into the probabilities of finding vertices of degree ku
and kv independently,

pku,kv = kupku
〈k〉

kvpkv
〈k〉

. (2.25)

The Erdős-Rényi and the configuration models have uncorrelated degree distribu-
tions.

Many calculations are performed as if we were traversing the network, arriving
at a vertex through an edge and leaving it through one, or all, the remaining edges
of this vertex. The number of edges of a vertex different from the one used to
arrive at it is the excess degree of the vertex (see Figure 2.15b). This quantity
is just one less than the total degree. Hence, the probability rk of having excess
degree k comes from Eq. 2.23, as the probability of having total degree k+ 1. The
probability distribution rk is

rk = (k + 1)pk+1
〈k〉

. (2.26)

Note that it is properly normalized,
∑
k≥0 rk = 1. To keep notation simple, we

will use k indistinctly for the degree and the excess degree. It will be clear by
context, or by explicitly expressing it, to which of the two probabilities (pk and rk,
respectively) the quantity k is associated. Note also that 〈k〉 is always the mean
degree, 〈k〉 =

∑
k kpk.

We can also consider directed complex networks, where edges can be traversed
only in one specific direction. If edges are directed, then the probability degree dis-
tribution has to differentiate between the in- and out-degree. We denote them as i
and j, respectively, and its corresponding degree distribution is pi,j (Figure 2.15c).
As for every edge there is a source and a target vertex, this distribution is con-
strained by ∑

i,j

(j − i)pi,j = 0, (2.27)

which means that the average in- and out-degree are the same, and half of the
total degree k = i+ j:

〈i〉 = 〈j〉 = 〈k〉2 . (2.28)
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By a similar reasoning as before, the probability that following a random, directed
edge to its target vertex, this vertex is of in- and out-degree i, j (Figure 2.15d), is

i

M
Npi,j = ipi,j

〈i〉
. (2.29)

Tree-like approximation

We have already seen that the local clustering coefficient of an Erdős-Rényi graph
is (Eq. 2.20):

〈C〉 = c

N − 1 '
c

N
.

In this model, C = 〈C〉, and the number of connected triples is N 〈k
2〉−〈k〉

2 . Using
Eq. 2.3 and that in a Poisson distribution

〈
k2〉−〈k〉 = 〈k〉2, the number of triangles

(cycles of length 3) is
〈k〉3

6 . (2.30)

More generally, in an uncorrelated network, the number of cycles of length l is
(Bianconi and Marsili, 2005)

1
2l

(〈
k2〉− 〈k〉
〈k〉

)l
, (2.31)

valid for small cycles. This means that, in the limit of very large graphs, the
number of finite cycles in the vicinity of a given vertex of an Erdős-Rényi graph
tends to zero, and up to some distance from it the network is a tree. A network
with this property is called locally tree-like, and it turns out to be a very useful
one to compute various network quantities. General uncorrelated networks are
locally tree-like as long as the second moment of the degree distribution does not
diverge. Note however that there are still many long cycles. If not, the network
would be disconnected by just the removal (or failure) of one edge.

Small components and the giant component

In Section 2.1.5 we saw that a graph can be either connected or disconnected, and
in particular that it can have many components. A general property of random
graphs, that was already studied in the first papers by Solomonoff and Rapoport
(1951), Gilbert (1959) and Erdős and Rényi (1959, 1960), is whether a graph has
many small components or there exist the so-called giant component, which spans
a significant fraction of the network. Taking the Gilbert model as an example,
for p = 0 (corresponding to c = 0) the network consist only of isolated vertices,
and hence there are as many components as vertices. On the other extreme, for
p = 1, the network is fully connected so there is only a single component that
includes all the vertices. What happens in between? In fact, for there to be a
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0 1
u0

1

f (u)

(a) Subcritical, c = 0.5.
0 1u∗

u0

1

f (u)

(b) Supercritical, c = 1.5.

Figure 2.16. Graphical solution of Eq. 2.32 of the Erdős-Rényi network. (a) In the sub-
critical phase, c < 1, there is only the trivial solution u∗ = 1. (b) In the
supercritical phase, c > 1, there is a second, smaller solution (in this case,
u∗ ≈ 0.42), which indicates that the probability of finding a finite component
is smaller than one, and hence there exists a giant connected component.

single component, the network does not need to be fully connected. If we relax
the condition even more, so we ask if there is a component of the order of the
network, it turns out that even in the sparse regime (constant c) the graph has
such component. (For example, for c = 5 the giant component contains around
99.3% of the vertices of the network.) It turns out that for c < 1 all components
are small (more exactly, they have size at most logN), while for c > 1 there is a
giant component of size SN , where S is a constant. The transition from the phase
with S = 0 and that with S > 0 is continuous, and thus the fraction of nodes S in
the giant component acts as an order parameter of a second-order phase transition,
with critical point at c = 1.

In a general uncorrelated network, this critical point can be found by consider-
ing the probability u that, randomly selecting an edge and following to one of its
ends, it does not connect to the giant component (or, equivalently, it connects to
any finite component). There exists a giant component in the network if and only
if this probability is strictly less than 1. The excess degree of the vertex reached
through the randomly selected edge is k with probability rk, so the probability u
can be expressed in a self-consistent equation as

u =
∑
k≥0

rku
k. (2.32)

Note that the function f(u) =
∑
k rku

k always fulfills f(1) = 1 (because the
probability distribution rk is correctly normalized), so u∗ = 1 is always a trivial
solution. Note also that f(0) = r0 > 0 (as long as the probability p1 of a vertex to
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have degree 1 is nonzero), and therefore Eq. 2.32 has a non-trivial solution (and
the network, a giant component) when the slope of f(u) at u = 1 is greater than
the slope of u, ie when

f ′(1) > 1. (2.33)

Figure 2.16 shows that there exists only the trivial solution in the subcritical phase
of the Erdős-Rényi model, while in the supercritical phase a second, non-trivial
solution u∗ < 1 appears.

Using Eq. 2.26 together with the previous equation one arrives at the criterion
of Molloy and Reed (1995) for the existence of a giant component:

〈
k2
〉
− 2 〈k〉 > 0. (2.34)

Roughly, it says that there will be a giant component if the average number of
second neighbors is greater than that of first neighbors, which is quite remarkable
as it depends only on the local structure of the network.

2.3.2 Generating functions
The Molloy-Reed criterion for the critical point can also be found using the prob-
ability generating function formalism presented by Callaway et al. (2000) and
extended in Newman et al. (2001). This formalism is very powerful and allows
to compute a variety of network properties for uncorrelated degree distributions,
such as the size of the giant component and the distribution of component sizes.
It has also been applied to models with clustering (Newman, 2009) and the Watts-
Strogatz model (Moore and Newman, 2000). In this Section, we introduce gener-
ating functions, and in the following Sections we present their specific application
to percolation in random networks. A very nice review of generating functions and
random graphs can be found in Newman (2003b) and Newman (2010).

Probability generating functions (Wilf, 2006) are another way to express prob-
ability distributions. They are defined as a power series whose coefficients are
the probability mass function of a discrete random variable. As Wilf visually de-
scribes them in the introduction of his book on generating functions, “a generating
function is a clothesline on which we hang up a sequence of numbers for display”
(Wilf, 2006, p. 1). They are very helpful for “counting things”, and among other
useful properties, they allow for a straightforward convolution of probabilities. Let
us define them with an example. Consider the distribution of the probability pk
that a vertex has degree k, which is properly normalized so

∑∞
k=0 pk = 1. The

generating function of the probability distribution pk is

gp(z) =
∞∑
k=0

pkz
k. (2.35)
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The function gp(z) encodes all the information of the distribution, and in particular
the probability pk can be recovered by taking the k-th derivative of gp(z) at z = 0,

pk = 1
k!

dkgp(z)
dzk

∣∣∣∣∣
z=0

. (2.36)

The generating function gp(z) is correctly normalized, gp(1) = 1. It is also conver-
gent for |z| ≤ 1.

The first moment of the distribution pk, which corresponds to the average
network degree 〈k〉, is just the first derivative evaluated at z = 1:

〈k〉 = g′p(1) =
∞∑
k=1

kpkz
k−1

∣∣∣∣∣
z=1

. (2.37)

This allows us to express the generating function for the excess degree, gr(z), as

gr(z) =
∞∑
k=0

rkz
k =

∞∑
k=1

kpk
〈k〉

zk−1 =
g′p(z)
g′p(1) . (2.38)

Higher moments can be similarly found by taking more derivatives. In general,
the n-th moment is

〈kn〉 =
∑
k

knpk =
(
z

d
dz

)n
gp(z)

∣∣∣∣
z=1

. (2.39)

Convolution of independent distributions can be obtained simply by multipli-
cation of their respective generating functions. Let us see that with the following
simple example: the outcome of tossing a (possibly biassed) coin. With probability
p0 the outcome is 0, and with p1 = 1− p0 it is 1. The generating function for this
probability is

p0 + p1z, (2.40)

and z can be seen as a variable that “counts” the number of “1s”. The generating
function of the probability for the total outcome after two coin tosses, labeled (a)
and (b), is

p
(a)
0 p

(b)
0 + p

(a)
0 p

(b)
1 z + p

(a)
1 p

(b)
0 z + p

(a)
1 p

(b)
1 z2 =

[
p

(a)
0 + p

(a)
1 z

] [
p

(b)
0 + p

(b)
1 z

]
. (2.41)

Similarly, the total number of edges emerging from n independent vertices (the
sum of their degrees) is generated by [gp(z)]n.

Generating functions can also be used with the directed network to express the
in- and out-degree distribution pi,j . In this case, one needs two variables x and y
to keep track of degrees i and j:

gp(x, y) =
∞∑

i,j=0
pi,jx

iyj . (2.42)
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The probability pi,j is recovered by

pi,j = 1
i!j!∂

i
x∂

j
ygp(x, y)

∣∣∣∣x=0
y=0

, (2.43)

where by ∂x we denote the partial derivative with respect to x. The mean in-degree
is

〈i〉 = ∂gp(x, y)
∂x

∣∣∣∣x=1
y=1

, (2.44)

and the probability in Eq. 2.29 is generated by

x
∂xgp(x, y)
∂xgp(1, 1) . (2.45)

2.3.3 Percolation and component sizes
So far we have seen the structural properties of networks with an uncorrelated de-
gree distribution. Depending on the parameters of these distribution, the network
can be made of many small connected components, or contain a giant one that
spans a significant fraction of the network But what happens when some of the
edges, or vertices, are removed? In this case, an existing giant component might
disappear, and new structures emerge. We already introduced that this failure of
vertices or edges is a process called site or bond percolation, respectively. Percola-
tion in lattices has been intensively studied by mathematicians and physicist since
the late Fifties, but its extension to complex networks is subject of very recent
studies. These have provided a deep understanding and applications in a wide
range of fields, including, for example, epidemics (Lloyd, 2001; Newman, 2002a)
and communication. In the study of the spread of a disease, people that get in con-
tact with other people form a social network, and the probability of transmitting
the disease between neighbors leads to a percolation process. In a communica-
tion network (say, for example, Internet), nodes or links may fail or be directly
attacked with some probability, blocking the spread of information through them
and possibly breaking the giant component into smaller, disconnected components.
In these situations, there is a critical vertex or edge probability above which there
still exists a giant (although possibly smaller) component, but below which this
component breaks into pieces. This critical probability marks the difference be-
tween an epidemic outbreak or a confined disease, or between a functional network
or a disconnected one.

All this crucial features—the existence of the giant connected component, its
size and the critical probability at which it first appears, and also the distribu-
tion of component sizes—can be calculated by building upon generating functions
(Newman et al., 2001). Let Rs be the probability that by following a random edge
to one of its ends we arrive at a connected component of size s. Edges are occu-
pied with probability φ and empty with probability 1− φ. Then with probability
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R0 = 1−φ we reach a component of size zero (the edge cannot be traversed because
it is empty). With probability φ we arrive at a vertex, so the size of the component
is at least one. This reached vertex has excess degree k with probability rk, and
thus in total the probability that we reach a component of size s (different from
zero) depends on the probability that the size of the components that emerge of
this vertex is in total s− 1:

Rs = φ
∞∑
k=0

rk
∑

s1,s2,··· ,sk
Rs1Rs2 · · ·Rskδ1+s1+s2+···+sk,s. (2.46)

We denote the generating function of this probability hR(z). By definition, it
is a power series of z with coefficients Rs, so

hR(z) = R0 +R1z +R2z
2 + · · · = 1− φ+

∞∑
s=1

Rsz
s. (2.47)

If we expand it using Eq. 2.46 and convolution of probabilities, we get an implicit
equation:

hR(z) = 1− φ+ φ
∞∑
k=0

zrk [hR(z)]k = 1− φ+ φzgr[hR(z)]. (2.48)

Here we used the generating function of the excess degree defined in Eq. 2.38.
Similarly, we can compute the probability Ps that a randomly chosen vertex

belongs to a connected component of size s. Starting from such a vertex, with
probability pk there are k edges that emerge from it, leading to k new components
of size Rsi each. Thus

Ps =
∞∑
k=0

pk
∑

s1,s2,··· ,sk
Rs1Rs2 · · ·Rskδ1+s1+s2+···+sk,s. (2.49)

Following the previous considerations we find that the function generating this
probability is

hP (z) = zgp[hR(z)]. (2.50)

These two generating functions encode all the information of the distribution of
component sizes.

2.3.4 Mean component size, percolation threshold and the giant
component

Knowledge of the generating functions hP (z) and hR(z) allows for the derivation
of important properties of the network. The main one of them is perhaps the
percolation threshold, which is the critical point where a giant connected compo-
nent emerges, expanding a finite fraction of the order of the network size. Such
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critical point marks a phase transition in the network structure. Below it, only
finite components exists. Another important property which also allows us to
find the percolation threshold is the mean size of the finite components in the
network—the mean component size. This average diverges when an infinite com-
ponent emerges, acting as a susceptibility in a magnetic material and pointing out
the critical transition.

Recall hR(z) from Eq. 2.48, which generates the probability that following a
random edge a component of a finite size is reached. Then, the probability, defined
in Eq. 2.32, that a component of any finite size is reached, can be expressed
as u ≡ hR(1). This gives an equation for φ with two different regimes: below
the critical probability, φ < φ∗, there is a unique real, positive solution u∗ = 1,
while above it, φ > φ∗, a new solution u∗ < 1 appears (as in the previously
discussed Figure 2.16). This transition marks the critical percolation threshold
φ∗. Unfortunately, u = hR(1) is usually a transcendental equation and has to be
solved numerically.

Similarly, the probability that a randomly chosen vertex belongs to any finite
component is hP (1) = gp(u). This gives the general expression for the fraction of
vertices belonging to the giant connected component:

S = 1− hP (1) = 1− gp(u). (2.51)

Note that below the percolation threshold u∗ = 1 is the only solution and therefore
there is no giant connected component, S = 1 − gp(1) = 0. On the other hand,
above φ∗ the solution u∗ < 1 brings a non zero size S > 0. Again, this equation is
usually transcendental and has to be solved numerically.

Finally, the mean component size is the first moment of the probability distri-
bution Ps, so it is simply given by

〈s〉 = h′P (1)
hP (1) = h′P (1)

1− S . (2.52)

Note that we divided by hP (1) because above the threshold this generating function
is not normalized. As we said the mean component size diverges at the critical
point, where an infinite component emerges. This is another fingerprint of the
phase transition, and since

h′P (1) = 1 + g′p(1)h′R(1) and h′R(1) = φ

1− φg′r(1) (2.53)

the mean component size diverges when 1 = φg′r(1). The percolation threshold is
thus given by the well-known result

φ∗ = 1
g′r(1) . (2.54)

Note that it depends only on g′r(1) (which in turn depends on 〈k〉 and
〈
k2〉, see

Eq. 2.34), so in general there is no need to find a closed expression for hP (z) and
hR(z) to obtain the most important percolation properties of the network.
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2.4 Simulation of networks

To test the analytical results, or to provide insight on a process when an exact
solution is difficult to find, in this thesis we have used numerical simulations of
complex networks. All the network numerical results of Chapter 3 have been simu-
lated by an implementation of the network generation, transformation and analysis
in C++. We have written a program that can generate a large set of graph mod-
els, including the Erdős-Rényi, the configuration and the Watts-Strogatz model,
as well as use data from real-world networks. The program also performs simu-
lations of entanglement percolation and can compute several network properties,
such as the size of components and of the biggest component, of limited compo-
nents, and distributions of path lengths. The program have been written using the
flexible Boost Graph Library6 (part of the C++ Boost Library7), that includes
many graph data structures and algorithms that are easily extendible (Siek et al.,
2002). We have also used the Mersenne Twister MT19937 algorithm, which gen-
erates high quality uniform pseudorandom numbers (Matsumoto and Nishimura,
1998), as implemented in the Boost Random Number Library8. We do not in-
clude the source code of the program, because it is about 9 000 lines of code
long. Instead, in this Section we introduce some of the basic concepts of graph
data structures and algorithms and explain how we have implemented them to
obtain the simulation results. The full code is however temporarily accessible at
http://sindominio.net/~nilvar/code/qper/, and available upon request.

2.4.1 Graph data structures

A graph can be implemented in many different ways, but any graph data structure
contains the set of vertices and edges, and usually provides some basic graph
operations such as adding and removing edges, testing whether two vertices are
neighbors or not and listing the number of neighbors of a given vertex. Sometimes
vertices and edges can have some attributes, such as the weight or the color. In
this case, the data structure can also provide a way to read and change these
properties, or store them externally. Here we introduce the two most common
implementations, namely the adjacency matrix and the adjacency list.

6The latest version is accessible at http://www.boost.org/doc/libs/release/libs/
graph/.

7http://www.boost.org/.
8http://www.boost.org/doc/libs/release/libs/random/.

http://sindominio.net/~nilvar/code/qper/
http://www.boost.org/doc/libs/release/libs/graph/
http://www.boost.org/doc/libs/release/libs/graph/
http://www.boost.org/
http://www.boost.org/doc/libs/release/libs/random/
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1

2

3

4

5
6

7

8

(a)



0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 1 0 0 1
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 1 0 0 1 0



(b)

1 → {2, 3, 4}
2 → {1, 4}
3 → {1}
4 → {1, 2, 5, 7, 8}
5 → {4, 6}
6 → {5, 7}
7 → {4, 6, 8}
8 → {4, 7}

(c)

Figure 2.17. Example of an undirected graph and its adjacency matrix (b) and adjacency
list (c).

Adjacency matrix

A graph G = {V,E}, with N = |V | the number of vertices, can be mapped to a
N ×N square matrix A, defined as

Auv

{
1 if (u, v) ∈ E, (2.55a)
0 otherwise. (2.55b)

A is the adjacency matrix of the graph G, rows and columns correspond to vertices
and each entry encodes the information whether the two corresponding vertices
are connected by an edge or not (see Figure 2.17b). If the graph is undirected, the
adjacency matrix is symmetric, Auv = Avu. If the graph has no self-loops, then
the diagonal entries of A are zero.

The adjacency matrix can be extended to include multiple edges by setting
Auv as an integer that indicates the number of edges between u and v. Similarly,
allowing Auv to be a real number, it can encode the weights of edges.

Adjacency list

The adjacency list (Figure 2.17c) represents the graph as a list of vertices, each of
them storing a list of edges containing it (ie a list of its neighbors). If the graph
is directed, then each vertex stores only its outgoing edges.

Cost of operations

One usually decides among these two data structures depending on two factors.
The first one is the required memory storage. The adjacency matrix uses an N×N
matrix, and thus requires O(N2). On the contrary, the adjacency list uses only
O(N +M) memory, where M = |E| is the number of edges. If the graph is sparse,
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Table 2.1. Required memory of storage and time complexity of some common operations
in the adjacency matrix and adjacency list. N is the number of vertices, |V |;
M the number of edges, |E|; and α the maximum number of neighbors for any
vertex in the graph.

Adjacency matrix Adjacency list
Storage O(N2) O(N +M)
Add vertex O(N2) O(1)
Add edge O(1) O(1)
Remove vertex O(N2) O(α)
Remove edge O(1) O(α)
Access edge O(1) O(α)

the adjacency list is much less demanding in terms of memory space. The second
main factor is the time complexity of the operations that one needs to perform
on the graph. Adding and removing vertices in the adjacency matrix is very slow,
as one has to resize or copy the matrix, but at the same time adding, removing
and checking the existence of an edge is done in constant time. The adjacency
list, though, is more efficient if one needs to access the neighbors of a given vertex.
Table 2.1 summarizes this cost. All the graphs that we have considered in this
thesis are sparse. Hence, we have used the adjacency list in our simulations, which
also provides the advantage to access very fast the neighbors of a vertex, and thus
simplifies the implementation of the q-swap.

2.4.2 Random numbers

Most random number generators provide pseudo-random numbers that are uni-
formly distributed on a given integer range. These numbers are ready to be used
to select, for example, a random vertex or edge of a network, or can be easily
mapped to a uniform distribution on the range [0, 1), so for example by drawing a
random r ∈ [0, 1) one can decide that an edge is occupied in a percolation process
if r < φ. But sometimes, like in the configuration model, one needs random num-
bers that follow a specific degree distribution, which can be arbitrary. The Boost
Random Number Generator Library already implements mappings from uniform
generators to some distributions (eg the Poisson distribution), but here we need
a method to obtain general distributions (and in particular, we are interested in
reproducing the power-law with exponential cutoff of Eq. 2.19). The two main
ways to achieve that are the transformation method and the rejection method,
which can also be combined in an hybrid method with features of both approaches
(Newman and Barkema, 1999, p. 396).

Suppose we want to obtain a random number x distributed according to some
normalized function f(x) which is zero outside an interval [xmin, xmax), and we have
a generator that provides uniform random numbers r ∈ [0, 1). The probability that
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a random X falls between xmin and x is the cumulative distribution function

F (x) =
∫ x

xmin
f(x′)dx′. (2.56)

This probability is equal to that of choosing r uniformly at random, so we can
identify

r = F (x). (2.57)

Hence, to obtain x the function F must be inverted. This is the so-called trans-
formation method, which is very convenient because it produces a random x from
every r.

Sometimes, however, it is not possible to obtain F−1. Then, one can use the
rejection method to generate a number with probability proportional to f(x): one
generates two uniform random numbers, x ∈ [xmin, xmax) and r ∈ [0, 1), and keep
the former if

r <
f(x)
fmax

. (2.58)

Here fmax is the maximum value of f(x) in the interval [xmin, xmax). If this con-
dition is not fulfilled, then a new pair has to be generated, until an acceptable x
occurs. This method is much more direct to implement, and allows to obtain ran-
dom numbers according to any distribution, but has to main drawbacks: xmin and
xmax must be finite, and it it much less efficient than the transformation method,
as commonly one has to produce many random numbers to obtain a useful one.

These two methods can be combined in the hybrid method. As before, one
has to generate two random numbers, but in this case x is generated by the trans-
formation method according to a distribution g(x) that satisfies g(x) ≥ f(x) for
all x ∈ [xmin, xmax) and for which G−1 can be obtained. Then, x is accepted as in
the rejection method if

r <
f(x)
g(x) . (2.59)

This is more efficient than the rejection method, as g(x) adapts better to f(x) than
fmax, and does not require xmin and xmax to be finite. Note that in the hybrid
method the function g(x) has to be normalized (and hence the function f(x) is
not).

2.4.3 Generation of graphs
Erdős-Rényi model

The Boost Graph Library (BGL) comes with a generator of the Erdős-Rényi model,
the sorted_erdos_renyi_iterator9, so we directly used it to simulate Erdős-
9Note that in old versions of the BGL, there is a bug in this generator (see Changeset
56651, https://svn.boost.org/trac/boost/changeset/56651). This has been fixed
since version 1.41.0.

https://svn.boost.org/trac/boost/changeset/56651
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Figure 2.18. Implementation of the configuration model. Random ku stubs are assigned
to node u, for every node. Then, a pair of stubs is selected uniformly at
random among all possible stubs and joined to form an edge.

Rényi networks. (To be more accurate, it generates an instance of the Gilbert
model.) The BGL also has a generator for a graph with a power-law degree
distribution, based on Palmer and Steffan (2000). However, it only generates
graphs with a specific degree distribution βkα.

Configuration model

General graphs within the configuration model, ie with uncorrelated degree dis-
tribution, are relatively easy to generate (Newman et al., 2001). First, a set of N
numbers {ku} randomly chosen to follow the desired degree distribution is gener-
ated, so each vertex u has ku stubs or “half edges” associated with it. In Chapter 3
we will simulate networks of a degree distribution that follows a power law with
an exponential cutoff, ie those of Eq. 2.19. Let us rewrite the distribution here for
convenience:

pk = Ck−τe−k/κ. (2.60)

To generate a random number k that follows this distribution, we use the hybrid
method explained in Section 2.4.2. First, a random k proportional to the exponen-
tial distribution e−k/κ is produced by the transformation method using a uniform
random number r1 ∈ [0, 1):

k = d−κ log(1− r1)e . (2.61)

Note that we compute log(1−r1) instead of log r1, to make sure that the logarithm
is always finite and does not give an error. Then, k is accepted with probability
kτ by producing a new r2 ∈ [0, 1) and checking if

r2 < kτ . (2.62)

Otherwise, a new pair r1, r2 is produced and the process repeated as many times
as necessary.

If the sum of the generated random numbers
∑
u ku is odd, a new set is gen-

erated until an even sum is obtained, so all stubs can be joined. Then, pairs of
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stubs are selected randomly and joined to form edges until there are no stubs left,
as depicted in Figure 2.18. Note that these pairs are selected uniformly at random
among all the stubs, not among all the vertices. In our simulations we do not allow
self-loops or multiple edges, but the code has the option to allow them.

Watts-Strogatz model

The BGL comes with a generator for the Watts-Strogatz model with rewired short-
cuts, called small_world_iterator. However, we were interested in the model
with added shortcuts, for which the analytical treatment is simpler (Moore and
Newman, 2000). Hence, we implemented our own generator, which is very sim-
ple: it first creates the base lattice (see Figure 2.11) and then for every edge in
the original lattice adds an edge among two nodes chosen uniformly at random if
r < β, for a uniform random number r ∈ [0, 1) and a shortcut probability β.

Regular graphs

We also checked previously known entanglement percolation results in regular
lattices (Acín et al., 2007), so we could (numerically) compare the full value of S
for any φ. To do so, we implemented a generator for the honeycomb and triangular
lattices, and also for the Cayley tree—which, however, has very strong border
effects.

Real-world datasets

As a check of the models with real-world network data, we considered two network
datasets. The first one, of the World Wide Web, was obtained by Albert et al.
(1999) and consists of websites in the domain nd.edu. It is accessible at http:
//www.nd.edu/~networks/resources.htm, together with many other interesting
datasets. The second one, of the Web of Trust in the OpenPGP cryptographic
protocol, was obtained directly by us from the Swiss keyserver, as explained in
Section 2.2.4. It is accessible at http://sindominio.net/~nilvar/netdata/,
with links to other network data repositories.

2.4.4 Algorithms on graphs
Breath First Search

The Breadth First Search (BFS) is a standard search algorithm on a graph, upon
which many other algorithms are based. It is already implemented in the BGL
in a flexible form that allows easy customization. Here we briefly review it, as
it is the main algorithm that we later use to implement q-swaps operations on a
network. The BFS begins at a given node u (sometimes called root) and explores
all its neighbors v ∈ Nu. It continues by exploring all the unexplored neighbors

nd.edu
http://www.nd.edu/~networks/resources.htm
http://www.nd.edu/~networks/resources.htm
http://sindominio.net/~nilvar/netdata/
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of each first-neighbor of u, ie all w ∈ Nv for v ∈ Nu and so on, until it has has
explored the whole component and there are no more unvisited nodes. If the graph
is connected, the BFS visits all its vertices; if not, it explores only a component,
and then one has to start a new search from an unvisited vertex if the full graph
has to be explored. In fact, one of the uses of the BFS is to check if a given graph
is connected. The main alternative to BFS is Depth First Search (DFS), which
instead of examining a component by “layers” explores first all the vertices that
can be reached from a first neighbor before moving to the next one.

The actual implementation of the Breadth First Search is done by adding all
newly found vertices to a “First-In, First-Out” (FIFO) queue, so the first vertex
added will be the first to be examined for new neighbors.

Incremental connected components algorithm

In simulations of entanglement percolation, we need to compute the size of the
components in the network for some edge probability φ (and, in particular, the
size of the biggest component). The BFS algorithm can be used for that, exploring
all components for every φ. The running time of the BFS is O(N+M), because all
N are explored and every edge of each node is checked for unvisited vertices. Since
we are interested in the percolation properties of the network for many different
φ ∈ [0, 1], use of the BFS would mean to explore the full graph every time. Instead,
one can use a different approach called incremental connected components, which
makes use of disjoint-sets data structure that maintains and updates efficiently a
collection of disjoint sets that corresponds to connected components in the graph
(Siek et al., 2002). To study the connected components of a graph G with edge
probability φ, for many different values of φ ∈ [0, 1], we start with an empty graph
G′, with V (G′) = V (G), and then for every incremental φ from 0 to 1, each edge
e ∈ E(G) is added to G′ if a uniform random number r ∈ [0, 1) fulfills r < φ.
Every time an edge is added to G′, the disjoint-sets is updated, and after all edges
corresponding to a given φ are checked, the size of the disjoint-sets is calculated.
In all, the full process takes O[N + Mα(M,N)] and α is a function that grows
very slow, being smaller than 5 for any practical purpose (Siek et al., 2002).

Limited-path-length components

In the case of limited-path-length components, that we will introduce in Chapter 3,
the previous incremental connected components algorithm cannot be use. Here
we want to compute which is the mean size of a component whose vertices are
separated by at most a path of length l from a central vertex, and hence use a
modified version of the BFS algorithm that stops when it arrives at vertices that
are at a distance l from the starting one, and returns the number of explored
vertices.
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Path length distribution

Finally, to find the shortest path length between all pairs of vertices in a graph,
so we can obtain the distribution of path length and the average path length lav,
we use Johnson’s algorithm, already in the Boost Graph Library (Johnson, 1977;
Siek et al., 2002). This algorithm takes O(N2 log V +V E) and is especially useful
in the case of sparse graphs.

2.4.5 Implementation of bipartite edges and the q-swap
In the quantum network model that we introduce in Chapter 3, edges can hold
several copies of a quantum bipartite state that acts as a quantum channel between
the nodes it connects. The probability of using each of this edges for quantum
teleportation, that we relate to the percolation probability in a graph, depends on
the number of copies and the type of state. This information is implemented in
the program using a property map of the graph, that maintains a list of the edges
together with two variables that encode the number and type of states in the edge.
When an entanglement swapping is performed (see Section 3.1.3), the type and
number of states in the involved edges change. The full operation that transforms
local parts of the network is the q-swap (see Section 3.2.3). This transformation
is performed on a target vertex and its neighbors, and makes use of entanglement
swapping. As we will see, the q-swap is done on vertices with a specific degree
q and has the property that it cannot be performed on a given vertex if some of
its neighbors have undergone a different q-swap. Therefore, the order in which
vertices are selected as target of q-swaps is important.

In our program, vertices are selected as possible targets using a search algo-
rithm. First, a random vertex is selected, a q-swap is performed on it (if it has
the appropriate degree q), and then new vertices are explored, as in the BFS al-
gorithm. For each new vertex explored, a q-swap is performed again if none of
its neighbors where previously used as targets, otherwise the following vertex is
explored. Once the component is fully explored, the program jumps randomly to
an unexplored vertex of a different component and starts again. Optionally, one
can select a different search algorithm, as the DFS, or explore vertices in a random
order. At the end, both the structure and the types and number of states in some
edges are changed, leading to an heterogeneous percolation where edges can have
different occupancy probability.





CHAPTER 3

Distribution of bipartite entanglement

In the previous Chapter, we presented several models of networks, which were
developed to reproduce the behavior of complex systems and of the processes that
take place in them. These complex systems can be of a highly diverse origin,
but share the common essential quality by which the local, non-trivial relations
between its elements define the functioning of the whole. As it was also pointed out,
in the last one or two decades they have been subject of intense interdisciplinary
research, spanning from social sciences to biology and technology. However, they
still remain quite unexplored in the quantum regime. This strikes with the fact
that quantum networks (Kimble, 2008) where nodes communicate between them
through quantum channels are essential to quantum information processing and
distributed applications, and large quantum communication networks have a good
chance to develop in a structure similar to their classical counterpart.

One of the key tasks in these networks is the transmission of quantum informa-
tion between two distant nodes of the network. As the previous Chapter suggests,
this task depends not only on the quality of the connections between nodes and
on the amount of resources, but also on the underlying structure of the network.
Therefore, understanding how structural properties affect the functionality of the
network will allow both the design of better network architectures and the mod-
ification of existing ones that make communication feasible at farther distances,
among a greater number of nodes or in the presence of higher levels of noise.

In this Chapter, we study communication strategies in a quantum network,
and in particular we address the basic question—how can we connect two distant
nodes in a network? More precisely, we consider a network where neighbors share
some bipartite entanglement, and our goal is to establish a bipartite entangled
state between two nodes that may be separated by a long distance. Although the
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direct transmission of entanglement has already been experimentally achieved over
long distances of about a hundred kilometers over free space (Ursin et al., 2007;
Fedrizzi et al., 2009; Ma et al., 2012), entanglement distribution at a longer range
or over noisier channels, such as optical fibers (Cirac et al., 1997; Kimble, 2008;
Ritter et al., 2012), will most probably need the use of intermediate repeaters.

The basic operation that propagates entanglement over several intermediate
stations is entanglement swapping (Żukowski et al., 1993), an implementation of
quantum teleportation (Bennett et al., 1993) that teleports an entangled state.
However, if the entanglement between neighbors is not maximal, or more real-
istically if the channels or the operations involved in the propagation introduce
some noise, the resulting distributed entanglement after the swapping decays ex-
ponentially with the number of swaps—that is, with the length of the path that
joins the two nodes. A promising proposal to overcome this difficulty is the use of
quantum repeaters in a one-dimensional chain of quantum channels (Briegel et al.,
1998; Dür et al., 1999) that alternate the swapping of many entangled states gen-
erated between neighbors with their purification (Bennett et al., 1996b; Deutsch
et al., 1996; Dür and Briegel, 2007). While swaps introduce noise and reduce
the entanglement, the purification steps recover it so it can be propagated to far-
ther distances. This approach has already several experimental proposals, and
experimental implementations of some of its building blocks1. This technique is
promising because it requires a number of resources that scales polynomially with
the distance (Dür et al., 1999), but it exploits only the entanglement present in a
single path connecting the two nodes: the “network” nodes are part of is just a
one-dimensional line.

The two nodes that one needs to entangle, however, may be embedded in a
more realistic, higher dimensional network. In this case, the presence of many
different paths can be used to deal with the exponential decay of entanglement
with distance. A probabilistic approach to the distribution of entanglement that
makes use of this high connectivity was first proposed by Acín et al. (2007) and
then extended for different networks and sources of noise. Opposite to the scheme
of quantum repeaters, which uses many states in a single path, in this case one
considers a full network with just one or several states shared between neighbors,
and tries to probabilistically distill perfect singlets from imperfect sources. In this
way, the presence of many different paths can compensate for the low probability
of entangling two distant nodes, much as in a percolation effect. In a different
approach, more related to that of quantum repeaters, Lapeyre Jr. et al. (2012)
used the entanglement in secondary paths to purify that present in the shortest
path connecting the two nodes.

Here we will focus on the probabilistic generation of long-distance entangle-
ment between two arbitrary nodes of a quantum network, and use methods and
techniques from percolation theory. In this case, the structure of the network will
be of utter importance in determining its functionality (Newman, 2002b). We will
1See for example Sangouard et al. (2011) and references therein.
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consider that the network is of a complex topology, and that nodes can perform
only local operations on the qubits they possess. Moreover, we restrict the in-
formation that every node has of the full network: the decision to perform these
operations depends only on a restricted knowledge of the local network structure
(the distribution of its neighbors) and on general statistical properties of the net-
work, such as the mean degree.

There are several reasons to study networks with this topology and informa-
tion restrictions. First of all, present telecommunication networks, such as the
Internet, have a complex structure defined by its scale-free degree distribution and
clustering, and it is very plausible that future quantum communication networks
will develop a similar structure, or even that present networks will be able to op-
erate in the quantum regime. Knowing how this structure affects the distribution
of quantum information, and in particular of entanglement, is then a key problem
for future distributed quantum tasks that rely on this type of networks.

Second, complex networks provide many interesting effects that are not present
in lattices with a regular structure. These effects include, for example, a high
resilience to node and edge failures, the small-world effect and compact path-length
distribution, a richer structure and the presence of communities. Understanding
their implications could be useful in the design of new quantum networks.

Regarding the limited knowledge about the network structure, this restriction
motivates the design of protocols that are efficient in the use of classical commu-
nication and that can operate in parallel, without need to coordinate with other
regions of the network. This is of a special importance when the network that
we consider is very large, which makes it impractical to explore the network in its
whole before implementing the quantum protocol, or to keep a “central” record of
what is going on every part of the network. It is also important when it comes
to considering that the network, in fact, is not a static system but can evolve in
time, while keeping its statistical description more or less stable.

Finally, and from a more theoretical perspective, although few qubit states have
been successfully characterized, an understanding of multipartite entanglement
of many-particle systems is still lacking. As we will show here, some quantities
which are exceedingly hard to calculate for states defined over regular lattices can
be carried with ease in complex networks, which are defined through statistical
properties. We will come back to this again on Chapter 4.

The relation between percolation and entanglement in a large system is already
present in the work by Calsamiglia et al. (2005), followed by Hartmann et al.
(2007a); Calsamiglia et al. (2007). There, the entanglement between particles of
a spin gas—a system of a large number of spins, initially in a product state, that
move classically and interact upon collisions, creating entanglement—is described
by the underling weighted graph that arises from the interactions, and two spins
can localize entanglement (Verstraete et al., 2004; Popp et al., 2005) if and only
if they are in the same component of the graph. After some time, a significant
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fraction of the spins in the gas has interacted with itself, and a “giant entangled
component” emerges.

Entanglement percolation, which makes use of such higher dimensional net-
works, was first proposed by Acín et al. (2007). Its goal is to establish a maximally
entangled state (which via quantum teleportation amounts to a perfect single-use
quantum channel) between two arbitrary nodes of a network, where nodes are
connected by partially entangled states. This can be easily achieved between two
neighboring nodes, since a partially entangled state can be converted into a max-
imally entangled state with a probability that depends on the initial amount of
entanglement. One can do the same with all states shared between neighbors,
creating components of nodes that are connected by a maximally entangled state.
Using then entanglement swapping (Żukowski et al., 1993), a maximally entan-
gled state can be propagated from two neighboring nodes to any two nodes that
belong to the same component, in analogy to the spin gas example introduced
before (Calsamiglia et al., 2005). If the initial entanglement between neighbors is
small, so is the probability of obtaining maximally entangled states from it, and
the quantum network consists of many small connected components. Two nodes
can establish a maximally entangled state if they belong to the same component,
which in this case happens with a probability that tends to zero for large networks.
If, instead, this entanglement is above a critical value, corresponding to the per-
colation threshold of the network, a giant component exists of size S > 0, and the
probability that two nodes can establish a maximally entangled state tends to that
of belonging to the giant component, S2.

Acín et al. (2007) showed that by a quantum preprocessing, the quantum
honeycomb lattice—a regular, two-dimensional lattice—could be transformed into
the triangular lattice, which has a lower percolation threshold, and hence the
probability of establishing long-distance entanglement was non-zero for a lower
amount of initial entanglement. This result was latter extended to other types of
regular lattices (Perseguers et al., 2008; Lapeyre Jr. et al., 2009), complex networks
(Cuquet and Calsamiglia, 2009, 2011; Wu and Zhu, 2011), the use of multipartite
entanglement (Perseguers et al., 2010a) and the presence of noise (Broadfoot et al.,
2009, 2010b,a; Cuquet and Calsamiglia, 2011).

Percolation theory has also found interesting applications in other areas of
quantum information. For example, in the creation of a two-dimensional cluster
state—which is a universal resource for measurement-based quantum computation
(MQC)—there can be qubit losses, leading to a site percolation. If the occupancy
of the cluster is above the percolation threshold of the square lattice, the state is
still useful for MQC, otherwise it is not (Browne et al., 2008). Also in the domain
of MQC, Kieling et al. (2007b) used a method based on percolation to efficiently
construct cluster states where the percolation probability comes from the use of
non-deterministic entangling gates. In quantum walks, the missing edges of a
dynamical percolation process have been used as a model of decoherence (Kollár
et al., 2012).
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This Chapter is divided in two main parts, each consisting of two Sections. The
first two Sections are devoted to networks of bipartite pure states. In Section 3.1 we
present the basic notation and concepts that will be used in the rest of the Chap-
ter, specifically for pure states: entanglement transformations and entanglement
swapping. However, we assume that the reader is familiar with quantum informa-
tion theory and do not give an introduction to it; instead, we refer the reader to
Nielsen and Chuang (2000) for an introduction to the subject and the common no-
tation used. Then, in Section 3.2, we study probabilistic distribution of bipartite
entanglement in networks where edges consist of pure, non-maximally entangled
states. We see how the structure of the network affects the percolation of entangle-
ment, and propose a family of local transformations that can decrease the critical
entanglement and increase the probability of establishing a long-distance entan-
gled pair. We use the methods presented in Chapter 2 to solve analytically the
case of networks with uncorrelated degree distributions, and confront this solution
with extensive numerical simulations. For the case of correlated networks, such as
the Watts-Strogatz model, and a real-world network, we see that simulations give
similar enhancement results. Finally, we relate the network transformation with
recent research in the field of complex networks regarding what has been termed
explosive percolation.

In the following two Sections, we turn to noisy networks of bipartite mixed
states. In Section 3.3 we present entanglement transformations and swapping in
the case of mixed states, and discuss how the previous percolation results can be
adapted. In the case of rank-two mixed states arising from an amplitude damp-
ing channel, for example, the strategies developed in the previous Section can be
directly applied. Then, in Section 3.4, we study how noise limits the maximum
number of stations though which information can be repeated and solve the cor-
responding limited-path-length percolation problem.

3.1 Entanglement in pure states

3.1.1 Entangled states
In the first part of the Chapter we will restrict to the entanglement of bipartite
pure states |ψ〉 of two qubits. In their most general form, these states can be
written as

|ψ〉 =
∑
i,j

cij |i〉A ⊗ |j〉B , (3.1)

where A and B are two subsystems, and {|i〉A} and {|j〉B} form an orthonormal
basis of the corresponding Hilbert spaces, HA and HB. The state is normalized,∑
i,j |cij |

2 = 1, and it is entangled if it cannot be written as |ψ〉 = |ψ1〉A ⊗ |ψ2〉B,
where |ψ1,2〉A,B is a pure state in system A,B.

States like this will be distributed among two different nodes A and B of the
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network, each holding one of the two qubits, and thus making them neighbors,
in the sense that they share some entanglement that can be used as a single-use
quantum channel. Each node will hold as many qubits as entangled states share
with its neighbors. We will allow local operations and classical communication
(LOCC), meaning that every node will be able to perform any quantum operation
on its qubits and to communicate classical information to its neighbors. Hence,
up to a local change of basis—which is allowed by our assumptions—, the state
|ψ〉 can be rewritten as

|ψ〉 =
√
λ0 |00〉+

√
λ1 |11〉 , (3.2)

where |00〉 is the compact form of |0〉A⊗|0〉B. This expression is called the Schmidt
decomposition, and the Schmidt coefficients

√
λ0 and

√
λ1 are non-negative real

numbers satisfying λ0 +λ1 = 1. Without loss of generality, the basis can be chosen
so that λ0 ≥ λ1, and |ψ〉 is entangled if λ1 6= 0. From Eq. 3.2 one can easily see that
the square of the Schmidt coefficients, λ0 and λ1, coincide with the eigenvalues of
the reduced state of the system ρA = TrB |ψ〉 〈ψ| or ρB = TrA |ψ〉 〈ψ| (for pure
states, both reductions have the same spectra).

3.1.2 Deterministic and probabilistic transformation of entangle-
ment

Since any two states with the same Schmidt coefficients are locally equivalent, all
the information about the entanglement of the two-qubit state |ψ〉 is encoded in
the single parameter λ0: the degree of mixedness of the local reductions fixes the
amount of entanglement. In fact, entanglement cannot increase under the action
of LOCC (Bennett et al., 1996a; Popescu and Rohrlich, 1997; Vedral et al., 1997;
Horodecki et al., 2000), and it is only possible to deterministically transform the
state |ψ〉, with largest Schmidt coefficient λ0, into a different state |ϕ〉, with largest
Schmidt coefficient µ0, via LOCC if and only if λ0 ≤ µ0.

This statement is a particular result of the more general necessary and sufficient
condition due to Nielsen (1999) for pure states |α〉 and |β〉 shared between two
d-dimensional subsystems A and B, which makes use of majorization theory. For a
real vector a = (a0, · · · , ad−1) in d dimensions, we use a↓ to denote the reordering
of a such that a↓0 ≥ a↓1 ≥ · · · ≥ a↓d−1. Then, given two d-dimensional real vectors
a = (a0, · · · , ad−1) and b = (b0, · · · , bd−1), a is majorized by b (or b majorizes a),
written as a ≺ b, if

k∑
j=0

a↓j ≤
k∑
j=0

b↓j (3.3)

for all k = 0, · · · , d − 1 (and equality instead of inequality at k = d − 1). Equiv-
alently, if a ≺ b then the two vectors are related by a doubly stochastic matrix,
a = Db. If the vector a and b are probability vectors, one can generate a from b
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by a mixing stochastic process. That is, a is more mixed than b. For example, for
d = 2, D takes the form

D =
(

t 1− t
1− t t

)
, (3.4)

with 0 ≥ t ≥ 1. Then one can obtain, say, (0.6, 0.4) from (0.7, 0.3) by a mixing
process with t = 0.75. Hence, (0.6, 0.4) ≺ (0.7, 0.3), ie the probability distribution
(0.6, 0.4) is more disordered than (0.7, 0.3).

Nielsen (1999) took this result and premised that entanglement cannot increase
under LOCC. Considering the reduced states of one of the subsystems, ρα =
TrB |α〉 〈α| and ρβ = TrB |β〉 〈β|, and the vectors α and β of its eigenvalues (which
are the squares of the Schmidt coefficients), then the result of Nielsen is that |α〉
can be transformed deterministically to |β〉 by local operations on A and B and
classical communication between them if and only if α ≺ β.

The majorization relation introduces a partial order on the set of bipartite pure
states, so for two generic bipartite states |α〉 and |β〉 it might not be always possible
to transform one into the other. This defines different classes of entanglement. In
the case where |α〉 can be transformed into |β〉, it was shown by Lo and Popescu
(2001) that the transformation can be done by a single measurement on the system
A and a unitary operation on B depending on the outcome, so (only) one-way
classical communication is needed.

However, for our case of two qubits (and d = 2), the order induced by the
majorization relation is total, and the state which can be deterministically trans-
formed to any other is the maximally entangled

|Φ00〉 = 1√
2

(|00〉+ |11〉) . (3.5)

This state is one of the four elements of the Bell basis,

|Φab〉 = 1√
2

(
|0a〉+ (−1)b |1a〉

)
, (3.6)

with a and b either 0 or 1, and a denoting the bit-complement of a, ie a = a⊕ 1.

The situation changes substantially if one allows for probabilistic transformations,
ie stochastic local operations and classical communication (SLOCC). The results of
Nielsen were extended to this case by Vidal (1999): given two pure states |α〉 and
|β〉, defined as in the previous paragraphs, the maximal probability of obtaining
|β〉 from |α〉 is

φ(|α〉 → |β〉) = min
k∈[0,d−1]

∑d−1
j=k α

↓
j∑d−1

j=k β
↓
j

. (3.7)

The criterion by Nielsen (1999) of the necessary and sufficient conditions for the
deterministic transformation is the φ(|α〉 → |β〉) = 1 case. From this general
result, it follows the case of interest here (Lo and Popescu, 2001; Bose et al.,
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1999): a generic two qubit state can be transformed to a maximally entangled
state (Eq. 3.5) by LOCC with optimal probability

φ1 = min {1, 2(1− λ0)} . (3.8)

This probability was first termed as entanglement of single pair purification (Bose
et al., 1999). However, in the following we call φ1 the singlet conversion probability
of |ψ〉, or SCP for short (Acín et al., 2007), to denote its relation to the bond
percolation probability. Apart from the already cited references, a nice review
of majorization and its relation to bipartite states can be found in Nielsen and
Chuang (2000, pp. 573–580) and Nielsen and Vidal (2001).

If instead of a single copy of |ψ〉, nodes A and B share n copies of this state,
|ψ〉⊗n, the probability that they obtain one maximally entangled state |Φ00〉 from
them is

φn ≡ φ(|ψ〉⊗n → |Φ00〉) = min {1, 2(1− λn0 )} . (3.9)

3.1.3 Entanglement swapping
Two separated parties, A and B, that share a maximally entangled state, like the
one in Eq. 3.5, can teleport the state of a qubit from A to B by performing some
joint operations on the qubit and the local part of the entangled state of A, and
sending two bits of classical information to B (Bennett et al., 1993). This quantum
teleportation scheme can also be used to transmit the state of a subsystem of a
larger system, that may be in an entangled states. This process is commonly
known as entanglement swapping (Żukowski et al., 1993), and allows to entangle
two systems that have not previously interacted.

Here we present a variation of such scheme that involves non-maximally en-
tangled state. The scheme is depicted in Figure 3.1. A central node C shares two
entangled states |α〉 =

√
λ0 |00〉+

√
λ1 |11〉 and |β〉 = √µ0 |00〉+√µ1 |11〉 with A

and B, respectively. To swap the entanglement, qubits in C are projected onto
the Bell state basis. The resulting state between the two qubits in A and B is

√
λ0µ0 |00〉 ±

√
λ1µ1 |11〉√

λ0µ0 + λ1µ1
, each with probability λ0µ0 + λ1µ1

2 , (3.10a)

or
√
λ0µ1 |01〉 ±

√
λ1µ0 |10〉√

λ0µ1 + λ1µ0
, each with probability λ0µ1 + λ1µ0

2 . (3.10b)

This results in an average SCP equal to 2 min{λ1, µ1}. Hence, if the two initial
states are the same, |α〉 = |β〉 =

√
λ0 |00〉 +

√
λ1 |11〉, the average SCP between

A and B after one entanglement swapping is the same as the one before the swap
between A and C, or C andB, which is a rather surprising result (Bose et al., 1999).
This is however not true for further entanglement swappings, and in particular the
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|α〉 |β〉
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Figure 3.1. Entanglement swapping. Small dots represent qubits; large, green circles are
nodes of a network. Initially, a central node C shares two entangled states |α〉
and |β〉 with A and B, respectively (represented by black lines). Entanglement
swapping consists in performing a Bell measurement on the two qubits of C
(red rectangle). If the entanglement that is actually teleported is, for example,
that between A and C, then C has to transmit the two classical bits of the
measurement outcome to B, who will apply a unitary transformation on its
qubits based on this information, and obtain one of the four states in Eq. 3.10
(red line).

use of a measurement basis of non-maximally entangled pairs of qubits (Perseguers
et al., 2008) or the teleportation via non-maximally entangled states (Modławska
and Grudka, 2008) can perform better.

3.2 Entanglement percolation in pure-state networks
We first focus on networks of pure, non-maximally entangled states |ψ〉 (see Eq. 3.2).
Every edge connecting two nodes in the quantum network holds n of these states,
and thus neighboring nodes have some probability φn of getting a maximally en-
tangled state from its non-maximal resources. This probability depends on the
amount of entanglement per state and the number n of them, as shown in Eq. 3.9.
If they succeed, these maximally entangled states can then be used for perfect
teleportation, ie they are equivalent to a single-use ideal quantum channel.

3.2.1 Critical entanglement and long-distance entanglement prob-
ability

This strategy can be readily mapped into a bond percolation problem, which we
call direct entanglement percolation. In previous works, it has also been called
classical entanglement percolation (Acín et al., 2007), but since it uses quantum op-
erations we will use the direct term to avoid confusions. The goal of entanglement
percolation is to probabilistically establish a long-distance, maximally entangled
state between two arbitrary nodes A and B of a large network. Using entangle-
ment swapping, any two nodes are able to share maximal entanglement if both of
them belong to the same component of maximally entangled nodes. Selecting a
node A of the quantum network at random, it belongs to a component C of size
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s with probability Ps. The probability that a second node B belongs to the same
component is related to the relative size of the component,

P (B ∈ C) = s− 1
N − 1 . (3.11)

Hence, the probability PAB that two random nodes A and B can establish a
maximally entangled state is

PAB = 〈s〉 − 1
N − 1 , (3.12)

where 〈s〉 is the mean component size.
We are interested in a regime—if it exists—where PAB is independent of N .

As we introduced in Chapter 2, there exists a critical probability φ∗, called the
percolation threshold, that in this case of a quantum network can be related to
a critical entanglement. Below the threshold, components are of size at most
O(logN), and therefore PAB tends to zero in the limit of large networks. Above
the threshold, where 〈s〉 diverges (the giant connected component appears),

P∞ ≡ lim
N→∞

PAB = lim
N→∞

〈s〉 − 1
N − 1 = S2 > 0, (3.13)

ie two nodes can establish a maximally entangled state if they both belong to the
giant component, which happens with probability strictly greater than 0. Hence,
in this case the percolation threshold marks the critical amount of entanglement
that is needed so that the probability of entangling two random nodes is nonzero.
This threshold, or equivalently this critical entanglement, is independent of the
distance that separates the two nodes, but depends strongly on the network topol-
ogy. Hence, for a given type of edges φn, long-distance entanglement will only be
possible for networks fulfilling φn > φ∗.

Remarkably, due to the quantum nature of the connections, it is possible to dras-
tically change the network topology by local actions: a particular measurement
is done on qubits within the same node, destroying some of the connections but
establishing new ones between second neighbors. Thus, a quantum preprocess-
ing of the network can be carried before edges are converted into singlets, so
the new structure provides a lower percolation threshold or a bigger giant com-
ponent. This preprocessing can be done using entanglement swapping, and has
been termed quantum entanglement percolation (Acín et al., 2007). Following the
previous argument, we will call this strategy swapped entanglement percolation.

The quantum preprocessing allows to change, for example, a honeycomb lattice
with two states |ψ〉 per edge into a triangular one, where new edges have the same
singlet conversion probability of a single state |ψ〉 (Acín et al., 2007). Edges before
and after the preprocessing have different singlet conversion probabilities, namely
φ2 and φ1 ≤ φ2, respectively, so one has to be careful that, even if the new threshold
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is lower, the decrease in the SCP can lead to a worse functioning of the quantum
network. To compare the performance of these two percolation strategies (direct
and swapped) in a specific network, we use the SCP of the state |ψ〉, φ1. The
percolation threshold of the honeycomb lattice and of the triangular lattice are

φ∗7 = 1− 2 sin(π/18) (3.14a)

and

φ∗4 = 2 sin(π/18), (3.14b)

respectively (Sykes and Essam, 1964). In the original honeycomb lattice with
|ψ〉⊗2 at every edge, the critical entanglement per edge is given by φ2 = φ∗7.
Equivalently, the critical entanglement per state is

φ1 = 2−
√

2
(

1 + 2 sin π

18

)
≈ 0.3585. (3.15)

Above this value, a giant component of maximally entangled states exists, and
P∞ > 0. In the triangular lattice resulting from the quantum processing, the
critical entanglement that had to be present in the original states |ψ〉 is φ∗1 =
φ∗4 ≈ 0.3472. Hence, the gain in the minimum amount of initial entanglement is
of about 3% (Acín et al., 2007; Perseguers et al., 2008). A similar enhancement
in the percolation threshold has also been observed in other regular structures
(Perseguers et al., 2008; Lapeyre Jr. et al., 2009). As mentioned above, analytical
results for P∞ (or equivalently for the size of the giant component) are exceedingly
hard to obtain and one has to rely on numerical results—see for instance Lapeyre
Jr. et al. (2009), where in addition to numerical simulations some approximate
results for φ→ 1 are given.

Here, we want to show that swapped entanglement percolation is not a peculiar
property of some particular lattices, but it is a rather universal feature. For this
purpose, we will broaden the study to a whole new class of networks: complex
networks. We consider a complex network, of which we do not known the ex-
act structure but only some general statistical properties, and decide whether to
transform or not the local neighborhood of a given node based only on locally
accessible information, such as the degree of this node. We will use generating
function techniques, like the ones described in Section 2.3.2 of the previous Chap-
ter, to calculate the percolation threshold and the size of the giant component for
the modified network, and to obtain which is the best transformation of a given
family.

3.2.2 Network model
We consider a quantum network in which neighboring nodes share n = 2 copies
of a bipartite pure entangled state of two qubits (see Eq. 3.2), |ψ〉⊗2. A node of
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Figure 3.2. Model of a quantum network of bipartite pure states. Large, green circles are
nodes in the network. Each node of degree k contain 2k qubits, represented as
small dots. These qubits are entangled with qubits from neighboring nodes:
each edge in the network (wide, gray lines) hold two entangled states |ψ〉 (black
lines).

degree k holds then 2k qubits, as shown in Figure 3.2. Recall Eq. 3.8, which gives
the singlet conversion probability for a single copy of |ψ〉:

φ1 = min {1, 2(1− λ0)} .

Using Eq. 3.9, the singlet conversion probability of an edge |ψ〉⊗2 is

φ2 = min
{

1, 2(1− λ2
0)
}

= min
{

1, 2φ1 − φ2
1/2
}
. (3.16)

With this probability two neighbors can establish a perfect channel between them.
As we discussed above, for two distant nodes this probability depends on the
structure of the network. In direct entanglement percolation, it will be strictly
greater than zero if φ2 > φ∗. The critical entanglement per state is thus

φ∗1 = 2−
√

4− 2φ∗. (3.17)

3.2.3 Network transformation with local knowledge
We study the quantum preprocessing of the network—the swapped entanglement
percolation—using a family of transformations that are applied on specific nodes.
These transformations, that we call q-swap, require only local information of the
network: the degree of a target node and the status of its neighbors. The q-swap
(see Figure 3.3) is built upon basic transformations, namely entanglement swap-
ping, that we introduced previously in Section 3.1.3. It performs entanglement
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Figure 3.3. q-swap transformation, in this example on a target node of degree q = 5.
Initially, the local network formed by the central node and its first-neighbors
is a star of 5 leaves. After performing entanglement swapping on the qubits of
the central node, the local network is transformed to a cycle of the 5 original
leaves, and the central nodes is disconnected from the rest of the network.

swappings between successive pairs of neighbors of a central target node of degree
q, thus changing an initial local q-star, with edges |ψ〉⊗2, to a local q-cycle, with
newborn edges that are in one of the outcomes of Eq. 3.10, while the central target
node becomes disconnected from the network. As we said, the average singlet con-
version probability of these newborn edges is φ1 (lower than the one in the original
edges, φ2). One of the heuristic motivations for a transformation of this type is
that, typically, a higher level of clustering leads to a lower percolation threshold
(Newman, 2003a). However, this intuition cannot be elevated to a general state-
ment since there are examples where a q-swap increases the percolation threshold
(see eg Figures 3.11b, 3.12b and 3.12d).

For q ≥ 4, there is a certain freedom in the actual implementation of the q-swap,
as one can choose which nodes of the initial q-star will end up as neighbors in the
new q-cycle. Had one access to other information beyond which are the neighbors
of a specific node, a strategy based on more knowledge of the network would be
possible. However, as we justified before, we restrict only to local knowledge of
the network structure, and for simplicity we consider that the new neighbors are
chosen at random.

For a given network topology (ie for some given global statistical properties),
we will see that performing q-swaps on nodes with certain degrees improves the
threshold. It is worth noting, however, that in some instances the application of
particular q-swaps may be counterproductive, as mentioned above. In addition to
the previously mentioned idea of increasing the clustering of the network, intuition
of what type of transformations will decrease the threshold can be obtained by
inspection of Eq. 2.54, that says that, for uncorrelated graphs, the percolation
threshold is inversely proportional to g′r(1). Expanding it with Eq. 2.38, we can
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Figure 3.4. Degree sequence nk/N before (black) and after (red) 2, 3-swap in two networks
of size N = 106. (a) Erdős-Rényi, 〈k〉 = 2.5. (b) Power law with exponential
cutoff, τ = 1 and κ = 4. In both cases, the increase in the number of isolated
nodes is equal to the q-swaps performed, that turn a target node of degree q
into one of degree 0.

see that

g′r(1) =
∞∑
k=1

krk =
∞∑
k=2

k(k − 1)
〈k〉

pk =
〈
k2〉− 〈k〉
〈k〉

. (3.18)

Every q-swap transforms the target node into an isolated node with degree k = 0,
but in turn the q neighbors of the target increase their degree by 1, so the mean
degree 〈k〉 of the network does not change. Hence, for a transformation that keeps
〈k〉 fixed (like the q-swap does), one should go for an increase of

〈
k2〉. As an

example, Figure 3.4 shows the change in the degree sequence nk of the 2, 3-swap
in an Erdős-Rényi and a scale free network, where the number of nodes of degree
2 and 3 is deeply decreased and at the same time the number of nodes with high
degrees is increased (note that even the maximum degree of the network is bigger).
See also that the number of isolated nodes increases by a quantity equal to the
number of q-swaps performed. Note, however, that this argument is partially
flawed and is only given here to provide some intuition on the effect of q-swaps.
Indeed, Eq. 3.18 is only valid for uncorrelated networks, while the transformed
network after q-swap operations will exhibit degree-degree correlations. However,
in the following sections we will see that even with these correlations the local
action of the q-swaps leaves the transformed network with a structure amenable
to analytical study.

3.2.4 Generating functions of the modified network
The main two figures of merit that we will use to compare between the direct
strategy, that leaves the network structure unmodified, and the swapped strategy,
that changes it, are the critical entanglement (φ∗1 and φ̃∗1 for the directed and
swapped strategies, respectively) and the probability of connecting two random
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nodes, related to the size of the giant components (S and S̃). As we saw in Eq. 3.13,
in direct entanglement percolation this probability is P∞ = S2. Since q-swaps
disconnect vertices, which can always be chosen not to be the two corresponding
to the parties that want to establish the maximally entangled pair, the probability
of connecting two remote nodes in the swapped entanglement percolation is in fact

P̃∞ = Ŝ2, (3.19)

where Ŝ is a normalized Ŝ = S̃S1/S̃1 and S1 (S̃1) is the value of S (S̃) at φ1 = 1.
To compute these two values we will use the generating function formalism

described in Section 2.3.2, which already gives us the solution for the original
network, φ∗1 and S. Recall that the method was to seek the generating function
for the probabilities that, either following a random edge or starting from a ran-
dom vertex, we get to a finite component of size s. These two probabilities are
respectively Rs and Ps, and are generated by hR(z) and hP (z). To find φ̃∗1 and
S̃ of the modified network, we need to obtain expressions for the new generating
functions h̃R(z) and h̃P (z). Every particular q-swap can be implemented (or not)
with probability Πq (or 1−Πq) on nodes of degree q. Giving the values of the set
{Πq} for all q present in the network fully specifies our swapped strategy.

q-swaps introduce cycles, so components are no longer treelike and generating
functions cannot be directly used. Note however that, since newborn edges cannot
be reused, those cycles do not overlap between each other, and can thus be treated
as blocks of a treelike component by considering two steps in the branching process.

Arriving to a q-cycle: critical entanglement

We first compute the generating function for the probability R̃s after q-swaps are
done, h̃R(z). Let us first start with the case when we would arrive at a vertex of
degree q that has undergone a q-swap transformation. Now, instead of arriving at
a vertex of degree q connecting to other q−1 components, after a q-swap operation
has been done we arrive at a cycle of q nodes (including the one we are coming
from) connected via edges occupied with probability φ1 (see Figure 3.5). When
edges are converted into singlets, the accessible nodes of this new q-cycle form a
path of length l with probability

φq1 for l = q, (3.20a)
qφq−1

1 (1− φ1) for l = q − 1, (3.20b)
(l + 1)φl1(1− φ1)2 for l ≤ q − 2. (3.20c)

This probability is illustrated in Figure 3.6b.
Note that paths of length l < q will connect the “arriving node” (identified

with a right arrow in Figure 3.5) to l unvisited nodes, while for l = q, the path will
only connect q−1 univisted nodes (the additional edge is used to close the q-cycle).
The total number of edges emanating from this path is given by the sum of the
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−→

(a)

−→

(b)

Figure 3.5. Example of the branching process before and after a 3-swap, starting at the
leftmost node. (a) Before any operation the branching process arrives at a
node of degree 3 (with a red border), leading to 2 components (in dark grey).
(b) After the 3-swap, the branching process is already in a 3-cycle, each of its
unvisited nodes belonging to one of the 2 components.

contributions of every unvisited node in the path. Each of these nodes has excess
degree k with probability rk, and thus leads to a component with a size generated
by the function zgr[h̃R(z)]. (The size includes the node in the path, hence the
z multiplying it.) Since these contributions are independent of each other, the
distribution for the total number of edges will be simply given by the product of
the corresponding generating functions. For l ≤ q − 2, l new components emerge,
with total size (including all the vertices in the cycle, except the starting one)
probability generated by

{
zgr[h̃R(z)]

}l
. For l = q− 1 and l = q, q− 1 components

emerge, again with total size probability generated by
{
zgr[h̃R(z)]

}q−1
. The total

size of such cycle (excluding the starting vertex) and its emerging components is
then generated by

Cq(z) =
q−2∑
l=0

(l + 1)φl1(1− φ1)2
{
zgr[h̃R(z)]

}l
+
[
qφq−1

1 (1− φ1) + φq1

] {
zgr[h̃R(z)]

}q−1
. (3.21)

Figure 3.6b shows a schematic representation of this function for a 3-swap.
This function can be used in the new h̃R(z) if one also discounts the contri-

bution of the target node, which is now of degree 0 and leads to no component.
Therefore, the new h̃R(z) is of the same form of Eq. 2.48 plus a term h̃R,q(z) for
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= + + + + · · ·

(a)

→ = + 2× + 2× +

(b)

Figure 3.6. (a) Schematic representation of hR(z) (see Eq. 2.48 on page 36). Small dots
correspond to nodes, circles to components, edges are states with SCP equal
to φ2. (b) In the new h̃R(z) after a 3-swap, the fourth term in the sum
(corresponding to rk = r2), is changed according to Cq(z) (see Eq. 3.21).
In this case, red edges correspond to newborn states with SCP equal to φ1,
dashed edges to a failed conversion into a singlet (with probability 1−φ1) and
solid edges to a successful one.

each q-swap:

h̃R(z) = 1− φ2 + φ2zgr(h̃R(z)) +
∑
q≥2

Πqh̃R,q(z) (3.22a)

h̃R,q(z) = rq−1

{
−(1− φ2)− φ2z

[
h̃R(z)

]q−1
+ Cq(z)

}
. (3.22b)

The latter Eq. 3.22b subtracts the original contribution of nodes with excess degree
q − 1 in the direct strategy and adds the contribution of the q-cycle.

At this stage we can already calculate φ̃∗1 as the smallest value of φ1 for which
there exists a positive solution

ũ∗ = h̃R(1) < 1 (3.23)

to Eq. 3.22a at z = 1. It is easy to convince oneself that each separate contribution
h̃R,q(1) either increases or lowers the percolation threshold and therefore for the
optimal strategy each Πq is either 0 or 1.

Starting at a q-cycle: long-distance entanglement probability

For the new h̃P (z) we need to consider that not all nodes of degree q are suitable
targets of q-swaps, since they cannot be performed on adjacent nodes. Therefore,
given a node of degree q there is a probability ηq that a q-swap can be performed
on it. If the q-swap is performed on a node, then it changes its degree from q to
zero and hence the contribution of reaching q components has to be substituted
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(a) (b)

Figure 3.7. Implementation of 2-swap in a cluster of 5 nodes with degree 2. Nodes are big
circles: empty if their degree is different from 2, red if they are operated on,
green if they are not. (a) Operations are done at nodes 1, 3 and 5, leading to
η

(max)
2 . (a) Operations are done at nodes 2 and 4, leading to η(min)

2 .

by that of being an isolated node:

h̃P (z) = zgp[h̃R(z)] + z
∑
q≥2

Πqηqpq
{

1− [h̃R(z)]q
}
. (3.24)

By using the solution ũ∗ of ũ = h̃R(1) here, we can obtain the size of the giant
connected component,

S̃ = 1− h̃P (1) = 1− zgp(ũ∗) + z
∑
q≥2

Πqηqpq [1− (ũ∗)q] . (3.25)

This gives the probability P̃∞ = Ŝ2 that two distant nodes are connected by a
path of singlets in the swapped entanglement percolation strategy.

3.2.5 Strategies to implement q-swaps
The probability ηq depends on which degrees are targets of q-swaps and on how
the network is traversed to operate on the nodes. To compute its value we need to
consider maximal clusters consisting of nodes where all vertices are of any target
degree q—the border of such clusters is necessarily made of nodes of degree different
from q, and hence operations can be done independently on every cluster.

Let us begin with the discussion of the simplest case in which only 2-swaps
are performed. We consider that we select a random vertex of degree 2, perform
a 2-swap on it, and then perform another 2-swap on every second node. Starting
from a random vertex of degree 2, we find a cluster of vertices of same degree 2
whose size is s with probability s(1 − r1)2rs−1

1 . By acting on every second node,
there are two possible values for the number of operations done in each cluster,
ds/2e and bs/2c (Figure 3.7), which coincide for s even. This gives a maximum
and minimum value for η2:

η
(max)
2 =

∑
s≥1

s(1− r1)2rs−1
1
ds/2e
s

= 1
1 + r1

(3.26)

η
(min)
2 = (1− r1)2 +

∑
s≥2

s(1− r1)2rs−1
1
bs/2c
s

= 1− (1− r1)r2
1

1 + r1
. (3.27)
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Figure 3.8. Probability η2 of performing a 2-swap, given a vertex of degree 2. Upper and
lower solid lines correspond to Eqs. (3.26) and (3.27) respectively, and the
dashed line to η(rand)

2 . Blue dots are Erdős–Rényi network simulations, and
red dots scale free network simulations. All the simulations were performed
with N = 106 and a Bread First Search traversal of the graph.

Note that in clusters of size s = 1, an operation is always done. Of course, η2
could be lower than η(min)

2 if instead of acting on every two nodes, we just selected
nodes at random.

When operations are performed starting from a random vertex in each cluster
of vertices with degree 2, one needs to take into account the number of vertices s
and t at odd and even (including zero) distance from the first vertex: operations
will be performed on a fraction t/(t + s) of the cluster. The probability ξ(s, t) of
starting in a vertex of degree 2 such that it has s neighbors of degree 2 at odd
distance and t at even distance is

ξ(s, t) =


(

2
1 + s− t

)
(1− r1)2rs+t−1

1 t if |s− t| ≤ 1,

0 otherwise.
(3.28)

The derivation of this probability is easily seen by the method of generating func-
tions explained later (see Eq. 3.34). Given the probability ξ(s, t), then the value
for η2 when operations are started at each cluster of target vertices is

η
(rand)
2 =

∑
s,t

t

t+ s
ξ(s, t) = r1 + (1− r1)2 atanh(r1)

2r1
. (3.29)

This falls between the two probabilities in Eqs. 3.26 and 3.27, η(min)
2 ≤ η

(rand)
2 ≤

η
(max)
2 . Figure 3.8 shows these three values together with numerical simulations
performing 2-swaps by traversing the graph with a Breadth First Search: for each



66 Distribution of bipartite entanglement

(a) (b)

Figure 3.9. (a) Example of a connected component with three clusters (in dark grey) of
nodes of degree 2 and 3. Nodes in red denote a possible set of targets of 2, 3-
swap. (b) Branching process in η(rand)

3 , starting from a node inside the cluster
of degree 3 and continuing to nodes of excess degree 2. 3-swaps are made on
red nodes, which are the t nodes at even distance from the top one.

component, a starting node is selected at random, a q-swap is performed on it
if it has the appropriate degree, and then neighbors are explored and q-swaps
performed on them if they are adequate targets of q-swap (ie if they have the right
degree and no q-swap has been performed on its neighbors yet). The numerical
values for η2 are close to the maximum value because it is much more likely that
the traversal of the graph started outside most of the degree 2 clusters (eg arriving
through one of the white nodes in Figure 3.7), thus performing the maximum
number of operations in them.

For general q, this probability can be found by generating functions similar to
the ones used for percolation. As we said, the probability ηq depends on the
target degrees {qi} and on how the network is traversed. By η

(rand)
q we denote

the probability ηq when a q-swap is first done in a random vertex with target
degree, and then the cluster of vertices with degree belonging to {qi} is traversed
by a Breadth First Search, performing q-swaps whenever possible (ie at every
second step). After that, another vertex with target degree which has not yet
been explored is selected, and its cluster traversed, until all target vertices have
been checked. Such clusters consist of vertices of degree k ∈ {qi} that are connected
by at least one path whose vertices have also a degree in {qi} and to which no
more vertices of degree k can be added. Figure 3.9a shows an example of three of
such clusters when the target degrees are 2 and 3.

A random vertex of degree k ∈ {qi} belongs to a cluster with t vertices at even
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distance (including itself) and s at odd distance with probability ξ(s, t). In this
cluster of size s+ t, t q-swaps are made. The probability η(rand)

q is then

η(rand)
q =

∑
t,s

t

s+ t
ξ(s, t). (3.30)

The function generating ξ(s, t) can be computed similarly to Eqs. 2.48 and 2.50.
In this case, it is a function of two variables: hξ(x, y) =

∑
s,t≥0 ξ(s, t)ysxt. Two

more distributions are needed: S(s, t) and T (s, t) are the probabilities of arriving
at a vertex of the given degree (or degrees) which is at an odd or even distance
from the starting vertex, respectively, and which belongs to a cluster of s extra
vertices at odd distance, and t at even distance. The corresponding generating
functions depend on each other:

hS(x, y) = 1−
∑
q

Πqrq + y
∑
q

Πqrq [hT (x, y)]q−1 , (3.31)

hT (x, y) = 1−
∑
q

Πqrq + x
∑
q

Πqrq [hS(x, y)]q−1 , (3.32)

and the function generating ξ(s, t) is

hξ(x, y) = x
∑
q

Πq [hS(x, y)]q . (3.33)

This allows to compute ξ(s, t) by taking partial derivatives in x and y. As in the
case of Eqs. 2.50 and 3.24, hξ(x, y) is in general a transcendental function and has
to be solved numerically. However, in some cases it can be solved analytically. In
the case of 2-swap only (Π2 = 1, Πq 6=2 = 0), Eq. 3.33 simplifies to the closed form

hξ(x, y) = x(1− r1)2(1 + r1y)2

(1− r2
1xy)2 . (3.34)

The probability ξ(s, t) in Eq. 3.28 is then

ξ(s, t) = 1
s!t!

∂s∂thξ(x, y)
∂ys∂xt

∣∣∣∣∣
x,y=0

=
(

2
1 + s− t

)
(1− r1)2rs+t−1

1 t (3.35)

if |s− t| ≤ 1 and 0 otherwise.
Alternatively, for the case of a single target degree, η(rand)

q can also be com-
puted exactly up to the n-th order in rq−1 by the branching process depicted in
Figure 3.9b. The process begins at step 0, with k0 = 1 vertices of degree q. At
step 1, k1 vertices out of qk0 = q are of degree q with binomial probability(

q

k1

)
rk1
q−1(1− rq−1)q−k1 . (3.36)
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At following steps i ≥ 2 in the branching process, there are (q − 1) new vertices
for each previous vertex of degree q. Thus, in every step, ki vertices are of degree
q with probability (

(q − 1)ki−1
ki

)
rkiq−1(1− rq−1)(q−1)ki−1−ki . (3.37)

Operations are made on vertices at even steps. Note that every new step in the
branching process involves higher orders in rq−1. Therefore, the expansion of ηq
up to order n is obtained by summing the contributions of the first n steps:

η(rand)
q =

∑
{ki}

∑bn/2c
i=0 k2i∑n
i=0 ki

(
q

k1

)

×
n∏
i=2

(
(q − 1)ki−1

ki

)
r

∑n

i=1 ki
q−1 (1− rq−1)q+(q−2)(

∑n−1
i=1 ki)−kn , (3.38)

where the sum in {ki} sums for k0 = 1, k1 = 0, 1, . . . , qk0 and ki≥2 = 0, 1, . . . , (q−
1)ki−1.

3.2.6 Network examples
In this Section we present and discuss the results of the critical entanglement
and long-distance entanglement probability for different complex networks. This
networks have already been introduced in Chapter 2: the Bethe lattice (p. 11), the
Erdős-Rényi (p. 17), an example of the configuration model, namely a scale-free
network with an exponential cutoff (p. 21), and the Watts-Strogatz small world
model with added shortcuts (p. 23). We will also present the results that would
be obtained if one could implement the swapped strategy in a real-world network.
For this example, we will use the World Wide Web snapshot of sites in the nd.edu
domain (Albert et al., 1999).

Bethe lattice

The degree distribution generating functions of the Bethe lattice with coordination
number k are simply gp(z) = zk and gr(z) = zk−1. In this network, the phase
transition occurs at φ∗2 = (k − 1)−1, ie is the solution φ∗ ≤ 1 of

1
k − 1 = 2φ1 −

φ2
1

2 . (3.39)

In the Bethe lattice all vertices have the same degree, so it is only possible to apply
one type of q-swap, that for q = k. The critical entanglement of the Bethe lattice
modified by the k-swap is the solution of

1
k − 1 = 2φ1 + φk1[φ1(k − 1)− (k + 1)]

1− φ1
. (3.40)

nd.edu
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Figure 3.10. Critical entanglement φ∗1 of the Bethe lattice (in black) and of the Bethe
lattice modified by a k-swap (in red), for coordination numbers k from 3
to 10. The quantum preprocessing gives always a better (lower) critical en-
tanglement, except for the special case k = 2 corresponding to an infinite
one-dimensional chain (not shown in the plot).

The Bethe lattice with k = 2 corresponds to an infinite one-dimensional chain. For
this special case, the deterministic conversion of |ψ〉⊗2 into a maximally entangled
state when φ1 ≥ 2 −

√
2, possible in the direct strategy, beats the swapped one,

which has the percolation threshold at φ1 = 1. In all the other cases k ≥ 3, the
quantum preprocessing via k-swap gives always a better threshold. Of course, as
k grows the threshold goes to zero in both cases. Figure 3.10 shows the differences
in the threshold for the first values of k.

Erdős-Rényi

The Poisson degree distribution of the Erdős-Rényi network gives equal generating
functions for the degree and excess degree, gp(z) = gr(z) = ec(z−1). This fact
simplifies many calculations. For example, from Eq. 2.48 with hR(1) = u, and
using Eq. 2.51, the relation between the probability u and the size of the giant
component is

u− 1 = −φ2S. (3.41)

Plugging it back to Eq. 2.51, the size of the giant connected component is the
solution of the transcendental equation

S = 1− e−cφ2S . (3.42)
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In this case this solution can be expressed in terms of the Lambert W function2,

S = 1 + 1
cφ2

W
(
−cφ2e−cφ2

)
. (3.43)

The percolation phase transition happens at the well-known point φ∗2 = 1/c.
In terms of the entanglement of |ψ〉 (recall Eq. 3.16, φ2 = min{1, 2φ1 − φ2

1/2}),
this means a critical entanglement for the original Erdős-Rényi network given by
the solution of

1
c

= 2φ1 −
φ2

1
2 . (3.44)

The critical entanglement after a set of q-swap transformations can be found using
the generating functions gp(z) and gr(z) of the Erdős-Rényi model in Eqs. 3.22
and 3.23. As an example, after the 2-swap and 3-swap operations, the critical
entanglement is given by

1
c

= φ2 + e−c[−φ2 + c(2φ1 − φ2
1)] (3.45)

and

1
c

= φ2 + ce−c[−φ2 + c(1 + φ1 − φ2
1)], (3.46)

respectively. Similarly, the probability of establishing long-distance entanglement
in the large network limit P̃∞ = Ŝ2 (Eq. 3.19) depends on S̃, the solution of
Eq. 3.25. These probabilities are plotted in Figure 3.11a for an Erdős-Rényi net-
work of mean degree c = 2.5 and 2, 3-swap transformations, showing a perfect
agreement between analytical and numerical results. As it can be seen, the gain

γ = φ̃∗1 − φ∗1
φ∗1

(3.47)

in the critical entanglement is quite high. Figure 3.11b shows this gain depending
on the q-swap that is performed, and also the optimal swapped strategy given
this family of transformations. Depending on the network parameters (the mean
degree) and on the transformation that is performed, the gain can be in some
situations higher than 20%. The performance of different q-swaps depends on the
mean degree c, usually improving the threshold those operations which act on
nodes whose degree is around c.

2The Lambert W (z) function is defined by the equation z = W (z)eW (z) for any complex
number z.
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Figure 3.11. Erdős–Rényi network. (a) Normalized size Ŝ of the giant component as a
function of φ1 for c = 2.5, before (black squares) and after (red circles) 2, 3-
swap. Lines are analytical results, dots are simulations of a single network
of size N = 106. (b) Gain γ as a function of the mean degree c after 2-
swap (blue line), 2, 3-swap (red line), 2, 3, 4-swap (yellow line), 2, 3, 4, 5-swap
(green line) and optimal q-swaps (dashed black line).

Scale free

As a model of a scale-free network we consider the configuration model with a
power-law degree distribution with exponential cutoff (Eq. 2.19):

pk = Ck−τe−k/κ, (3.48)

where C is a normalization constant. The generating functions of the degree and
excess degree in this case are

gp(z) =
Liτ

(
e−1/κz

)
Liτ

(
e−1/κ) (3.49)

and

gr(z) =
Liτ−1

(
e−1/κz

)
zLiτ−1

(
e−1/κ) , (3.50)

respectively. Here Lin(z) is the n-th polylogarithm3 of z. The critical entanglement
of the direct strategy is given by

φ∗2 =

Liτ−2
(
e−1/κ

)
Liτ−1

(
e−1/κ) − 1

−1

. (3.51)

3The polylogarithm Lin(z) is defined as the sum Lin(z) =
∑∞

k=1
zk

ks . The case n = 1
is related to the natural logarithm, Li1(z) = − log(1 − z). It also has an alternative
definition via repeated integrals, Lin+1(z) =

∫ z

0
Lin(t)

t dt.
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Figure 3.12. Scale-free network, with a power-law degree distribution with an exponen-
tial cutoff, see Eq. 3.48. (a) and (c) are the normalized size Ŝ of the giant
component as a function of φ1, before (black squares) and after (red cir-
cles) 2, 3-swap. Lines are analytical results, dots are simulations of a single
network of size N = 106. (b) and (d) are the gain γ as a function of the cut-
off κ after 2-swap (blue line), 2, 3-swap (red line), 2, 3, 4-swap (yellow line),
2, 3, 4, 5-swap (green line) and optimal q-swaps (dashed black line).

We do not give the explicit equations for the critical entanglement for the swapped
strategy, but again they can be obtained by using the generating functions gp(z)
and gr(z) in Eqs. 3.22 and 3.23. Figure 3.12 show the results for the giant connected
component evolution and the gain in scale free networks with τ = 1 and τ = 2.
Note that in this case the gain can be of around 25%.

Watts-Strogatz small world model with added shortcuts

The Watts-Strogatz model has high clustering and a correlated degree distribution.
The tree-like assumption does not hold, and the above analytic approach cannot
be used. However, numerical simulations show that q-swaps can also provide an
improvement in the percolation threshold, φ̃∗1 < φ∗1. These results are summarized
in Figures 3.13 and 3.14a. The former shows the critical entanglement and the size
of the giant connected component for different shortcut probabilities β and different
q-swaps, with a behavior that is qualitatively equivalent to that of networks with
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(b) β = 0.6, 3-swap.

Figure 3.13. Watts-Strogatz small world model (k = 1) with added shortcuts. Network
size is N = 106. Normalized size Ŝ of the giant component as a function of
φ1 in a network where shortcuts are added with probability β, before (black
squares) and after (red circles) q-swap. Solid lines join dots and are a guide
to the eye.

uncorrelated degree distribution. The latter shows the comparison between the
critical entanglement of an unmodified and a modified network as a function of
the shortcut probability. In some cases, however, the direct strategy is superior to
the swapped strategy for small values of β (in the case shown, k = 1 and 2-swap,
for β below ≈ 0.05).

A real-world example: the World Wide Web

As a real-world network we take the example of a scale-free network consisting of
World Wide Web sites in the nd.edu domain (Albert et al., 1999)4. In this case
we introduce an artificial cutoff by neglecting nodes with degree k ≥ 15, leaving a
graph with 142 192 nodes and 170 352 edges. Results after a 2, 3-swap are shown
in Figure 3.14b, showing an enhancement. However, in this case finite-size effects
make it difficult to appreciate the exact critical entanglement.

As a final remark, note that, for all networks in general, it may be counterpro-
ductive to perform q-swaps. In the above figures we see that for some values of
φ1 the giant connected component fraction S without preprocessing is larger than
Ŝ. This often happens around φ1 = 2 −

√
2. This is precisely the point where

the edges in the unmodified network can be directly converted into singlets with
φ2 = 1, ie all connections become ideal channels and S attains its maximal value
S = S1. Obviously at this stage any preprocessing cannot further increase the size
of the connected component, and it will most likely decrease it.

4The network dataset is available at http://www.nd.edu/~networks/resources.htm.

nd.edu
http://www.nd.edu/~networks/resources.htm
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Figure 3.14. (a) Watts-Strogatz small world model, N = 106. Critical entanglement φ∗1
as a function of shortcut probability β before (black squares) and after (red
circles) 2-swap. The black line is the analytic result from Moore and Newman
(2000), the red line joins dots and is a guide to the eye. (b) World Wide Web
network (Albert et al., 1999), with a cutoff at k = 15, before (black squares)
and after (red circles) 2,3-swap. Solid lines join dots and are a guide to the
eye.

3.2.7 Explosive percolation: advance and delay of the transition
Up to now, we have considered entanglement percolation in networks where con-
nections are built on pure, non-maximal bipartite entangled states, and have stud-
ied a local quantum preprocessing of the network that can significantly decrease
the percolation threshold and therefore allow quantum communication for a lower
level of entanglement. Decreasing the percolation threshold was of course a goal
motivated by the need to allow quantum communication with less resources. In
a different context, however, the goal can be instead to increase the value of the
critical point (Bohman and Frieze, 2001). A clear example is the spread of a dis-
ease in a community. In this case, the threshold marks the point of the outbreak
of an epidemic, and hence one is interested in a threshold as high as possible.

Recently, a stimulating paper by Achlioptas et al. (2009) has triggered an in-
tense research into an abrupt percolation phase transition, that has been termed
explosive percolation. Percolation processes are typically second-order phase tran-
sitions: the order parameter (the size of the giant component, in this case), changes
continuously but its derivative (the mean component size) diverges at the critical
point. In this thesis we have considered percolation as a process where edges
have a certain occupancy probability. Alternatively, one can consider a different
approach where edges from a given set are added one at a time (and hence intro-
ducing a sense of “time” in the evolution of the graph). This is analogous to the
difference between the Gilbert and the Erdős-Rényi models. With this different
approach to percolation, the standard, continuous percolation phase transition of
the Erdős-Rényi model corresponds to a random choice of the added edge at each
step.
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Figure 3.15. Evolution of the relative size S of the largest cluster of networks withN = 500
as a function of a normalized “time” t = m/N (m is the number of edges
added). Blue, red and yellow lines correspond to the product, adjacent edge
and triangular rules (Achlioptas et al., 2009; D’Souza and Mitzenmacher,
2010). The green line is the simulation of a standard Erdős-Rényi network
with no selection rule. The black line is the analytic value for this standard
Erdős-Rényi network. (a) In explosive percolation, edges are selected if they
minimize these rules, showing a delay of the threshold and an abrupt change
in S. (b) If edges are selected to maximize the rules, the effect is similar to
that of a q-swap transformation.

Achlioptas et al. (2009) proposed a different rule in the selection of the added
edge: two of the possible edges should be selected at random, say (u1, v1) and
(u2, v2), but only the one that minimizes the product of the sizes of components
it merges is actually added, while the other one is discarded. With this product
rule, the appearance of the giant component was delayed (the critical point was
higher), but the phase transition appeared to be discontinuous (Achlioptas et al.,
2009), an effect also observed on scale-free networks (Cho et al., 2009; Radicchi
and Fortunato, 2009). Although the phase transition related to this selection rule
was later shown to be actually continuous (da Costa et al., 2010; Riordan and
Warnke, 2011), the transition is still very sharp for networks of very large sizes
(up to order 1018). Recently, a modified rule has been introduced that gives rise
to a truly discontinuous phase transition (Panagiotou et al., 2011).

The idea behind explosive percolation is that the appearance of the giant com-
ponent is delayed by choosing the edge (ui, vi) that minimizes the product rule.
This keeps largest components similar in size in the subcritical regime and for
a longer time, until a very small (presumably finite) number of additional edges
joins them. Figure 3.15a shows this process for three different selection rules: the
already presented product rule (Achlioptas et al., 2009), and the adjacent edge
and triangular rules of D’Souza and Mitzenmacher (2010), which follow a similar
protocol of choosing an edge which minimizes the growth of components. Other
rules have also been presented (see eg Araújo and Herrmann, 2010).

This idea can be turned around. If, instead, one chooses the edge that max-
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imizes the product rule (or the other two rules, in case they are used), the giant
component appears before the standard threshold (Figure 3.15b), and the similar-
ity with entanglement percolation is clear. One of the drawbacks of the product
rule is that it is a rather artificial process—edges are selected one at a time, and
the decision to actually add them or not is clearly nonlocal. Moreover, the process
of adding one edge at a time is radically different from that on which entanglement
percolation is based, with a probability associated to every edge. However, a bet-
ter understanding of entanglement percolation could be obtained by investigating
the effect of the delay or acceleration of component growth. This could lead to
a better control of the critical entanglement needed to establish a long-distance
singlet.

3.3 Entanglement in mixed states
A network with nodes connected by pure states is an abstraction that gives insight
into the possibilities of long-distance entanglement in complex networks, enabling
perfect teleportation between distant parties when at least a path of maximally
entangled states is created. In realistic implementations, however, networks are
noisy (Cirac et al., 1997; Duan et al., 2001; Kraus and Cirac, 2004; Kimble, 2008;
Duan and Monroe, 2010; Ritter et al., 2012). In the present and the following Sec-
tion we move to the study of entanglement distribution in networks with noise. As
in the pure-state scenario, we consider a network where neighbors are connected by
bipartite states ρ, which now are mixed. We begin in Section 3.3.1 with a brief pre-
sentation entanglement transformation and swapping with rank-two mixed states,
that have been considered in the context of entanglement percolation (Broadfoot
et al., 2009), and discuss how they could be used in a q-swap transformation of
a mixed-state network. Then in Section 3.3.2 we turn to full-rank states, and
present how the fidelity of these states decreases with the number of swappings.
This will lead us to a different approach to entanglement distribution in a mixed-
state scenario, where noise limits the maximum number of steps through which
information can be repeated. We present this limited-path-length percolation in
the following Section 3.4.

3.3.1 States from amplitude-damping channels
If one assumes perfect local operations, so once the mixed-state connections in
the network are established no more noise is introduced, a natural extension of
entanglement percolation from pure-state to mixed-state networks is to purify the
entanglement of each edge in the network into a pure, maximally-entangled state,
and then use this state for perfect entanglement swapping, as in the ideal scenario.
That is, to transform ρ⊗n → |Ψ〉 via LOCC, where n is the number of bipartite
mixed states shared between two neighbors. Jané (2002) showed that this can be
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done with a certain nonzero probability if and only if the states ρ are of the form

ρAD ≡ ρ(λ0, γ, λ) = λ |ψ〉 〈ψ|+ (1− λ) |01〉 〈01| , (3.52)

where |ψ〉 =
√
λ0 |00〉 +

√
1− λ0 − γ |11〉 +√γ |01〉 and 0 ≤ λ ≤ 1, and there are

at least n = 2 two copies of them (possibly with different parameters). States like
these occur as the result of sending |ψ〉 through an amplitude damping channel
(Nielsen and Chuang, 2000). Given two states ρ(λ0, γ, λ) and ρ′(λ′0, γ′, λ′), the
singlet conversion probability is in this case

φcla = 2λλ′min{λ0(1− λ′0 − γ′, λ′0(1− λ0 − γ)}, (3.53)

and for λ = 1 and γ = 0 it reduces to the pure-state case described in Section 3.1.
Broadfoot et al. (2009, 2010b) considered networks with nodes connected by

bipartite mixed states arising from an amplitude damping process, and showed that
any two nodes in the network can generate a perfect singlet if and only if they are
joined by at least two paths and the mixed states are like that of Eq. 3.52. So in
particular, if one considers (possibly complex) networks as the ones in Section 3.2
but with edges ρ⊗2

AD instead of |ψ〉⊗2, the entanglement percolation results of the
unmodified network hold, with the new edge probability defined by Eq. 3.53.

In the same work, Broadfoot et al. (2009, 2010b) also considered three different
implementations of entanglement swapping that can be used to change the struc-
ture of the network, so again a quantum preprocessing can enhance the percolation
properties. The first type of swapping is just that corresponding to the classical
strategy, in which each edge is probabilistically converted to a singlet and then the
swapping propagates it so distant nodes can be perfectly connected if they are in
the same component. The second one, which they call hybrid swapping, first con-
verts each edge to a pure state (but not necessarily maximally entangled) and then
implements the swapping, which produces a state with some SCP φhyb. Finally,
the third one directly performs entanglement swapping for each of the copies of
ρ in an edge, and then purifies the resulting distributed states into a singlet with
probability φdir. This last implementation is called direct swapping. The hybrid
swapping gives always a probability greater or equal than the other implementa-
tions, and is thus the one that should be used. These ideas have been extended to
networks with certain rank-three connections (states resulting from an amplitude
damping channel can undergo phase errors) by combining error correction and
percolation (Broadfoot et al., 2010a).

Broadfoot et al. apply their results to networks with a regular topology, but in
principle one could also use the hybrid swapping to implement the q-swap trans-
formation in a complex network with amplitude damping noise and at least four
states per edge, and consider the probabilities φhyb and φcla instead of φ1 and φ2
in Eqs. 3.22a and 3.24 to find the percolation threshold and the giant component
size of the modified networks.
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3.3.2 General states
A general, rank-four two-qubit state connecting two nodes can be characterized
by its maximal singlet fraction (or fidelity) F :

F (ρ) = max
|Φ〉
〈Φ| ρ |Φ〉 , (3.54)

where Φ is a maximally entangled state. The singlet fraction F determines how
good the state ρ is for teleportation: the optimal fidelity of teleportation f is
related to the singlet fraction (Horodecki et al., 1999) by

f = 2F + 1
3 . (3.55)

Using only LOCC, any general state can be depolarized into a Werner state by
performing random local unitaries (Bennett et al., 1996c,b). The resulting state,

ρF = F |Φ00〉 〈Φ00|+
1− F

3 (|Φ01〉 〈Φ01|+ |Φ10〉 〈Φ10|+ |Φ11〉 〈Φ11|) , (3.56)

is diagonal in the Bell basis and has the same singlet fraction F of the original state.
This state is entangled if F > 1/2. In this case, it can be used for teleportation,
exceeding the classical limit f = 2/3. Note that, as long as the original ρ is entan-
gled, this limit can be achieved even if F < 1/2 by locally increasing the singlet
fidelity through non-trace-preserving (Horodecki et al., 1997) or trace-preserving
LOCC (Verstraete and Verschelde, 2003).

The Werner state ρF can also be rewritten as a combination of the maximally
entangled state |Φ00〉 and the maximally mixed state of two qubits 11/4,

ρα = α |Φ00〉 〈Φ00|+ (1− α)114 , (3.57)

with α = (4F − 1)/3, so it is entangled if α > 1/3. ρα can be interpreted as the
result of transmitting a pure |Φ00〉 through a depolarizing channel (Nielsen and
Chuang, 2000, p. 378).

As in the case of pure states, one can propagate entanglement between two
nodes A and C to a third node B via entanglement swapping if B and C share
also an entangled state (see Fig. 3.1 on page 55). If the states between A and C,
and B and C, are Werner states ρα1 and ρα2 , respectively, then with probability
α0α1 two Bell states |Φ00〉AC |Φ00〉CB are obtained and the swapping protocol is
successful, resulting in |Φ00〉AB. In all other cases the protocol fails, resulting in
the completely mixed case. That is, after swapping AB become entangled with
a Werner state ρα of parameter α = α1α2. This means that the singlet fraction
will decrease exponentially in a chain of swaps, and the resulting state will become
useless for quantum teleportation: when a state is teleported through l identical
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states ρα (Briegel et al., 1998; Dür et al., 1999; Sen, De), its fidelity is 1 with
probability αl and 1/2 otherwise, so its final fidelity is

fl = 1 + αl

2 . (3.58)

To overcome this difficulty, one can try to purify the entanglement resulting after
each swap, and then use the resulting state in the following swap. This is the idea
behind quantum repeaters (Briegel et al., 1998; Dür et al., 1999), where the goal is
to produce a highly entangled state between two distant nodes in a one-dimensional
network (see also Duan et al., 2001; Hartmann et al., 2007b; Sangouard et al.,
2011). The idea to combine entanglement swapping and purification has been
recently extended to general networks with an arbitrary architecture by Lapeyre
Jr. et al. (2012). In another approach, Perseguers (2010) gives a fidelity threshold
for the links above which long-distance quantum communication in the presence
of noise is possible for an infinite cubic lattice, by mapping the problem to a three-
dimensional noisy cluster state (Raussendorf et al., 2005). This approach strongly
relies on the high symmetry of the lattice, and is hence not suited for complex
networks.

3.4 Limited-path-length percolation in mixed-state net-
works

Communication in noisy networks can be considered from another perspective:
the noise in the connections fixes a limit lmax in the maximum number of nodes
through which the information can be repeated before it becomes too corrupted
(Dür et al., 1999), and one may ask if still a significant fraction of the network can
be reached. In this limited-path-length scenario, the total number of vertices that
a given node can communicate to (ie the nodes to which it can teleport information
with fidelity above a threshold fmin, or similarly the nodes at a distance l ≤ lmax,
see Figure 3.16) also depends strongly on the structure of the communication
network. This quantity is in fact related to the average path length lav that we
introduced in Section 2.1.4: all nodes within this distance constitute a significant
fraction of the network. Therefore, for a path length limit lmax above the average
lav, communication will be possible among an important number of nodes. Since
the limiting lmax is finite, the giant connected component appears only in models
where lav is also finite. In general, this only happens if the network size is finite
too. The question then is whether a small lmax will suffice to cover a significant
fraction of the network. In finite d-dimensional networks, the average path length
scales as lav ∼ N1/d. However, the average path length of many complex networks
scales logarithmically with the size of the network. This property is known as the
small world effect, and appears also in many real world communication networks
such as the Internet. In this case, to access a significant fraction of nodes, only
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(a) lmax = 1, s1 = 11. (b) lmax = 2, s2 = 37.

(c) lmax = 3, s3 = 115.

(d) lmax = 1, s1 = 4. (e) lmax = 2, s2 = 10. (f) lmax = 3, s3 = 19.

Figure 3.16. For a limited path length, cluster growth depends on the network topology.
Here, clusters of limited path length lmax = 1, 2, 3 and size slmax in the Web
of Trust (a)–(c) and the honeycomb lattice (d)–(f). In the Web of Trust, the
central node (bigger) corresponds to a key of who writes this. For each figure,
nodes in red are those at the maximum distance 1, 2 or 3.



3.4 Limited-path-length percolation in mixed-state networks 81

a small number of edges needs to be traversed. Small world models are therefore
the first candidates, where loses by noise can be balanced by a short path length.

The problem of limited path percolation was also addressed in a different ap-
proach by López et al. (2007). In their model, they calculate the percolation phase
transition under the assumption that, after deleting a number of edges, communi-
cation is only effective if the new minimum path length between two nodes does
not exceed a multiple of the original path length between them (before edges are
removed). Thus, in their study the limitation in the path length comes from the
topology of the network and not from the nature of channels connecting nodes,
which fixes a constant limit of nodes through which the information can be re-
peated.

Here, we are interested in the number of nodes that can exchange quantum
information with a given node above some fixed minimum fidelity fmin, or simi-
larly with what probability two random nodes can reliably communicate between
them. We will consider a similar scenario as in the previous Sections, but replac-
ing pure-state connections with generic entangled mixed states. Here, no quantum
preprocessing will be possible. However, we will find that the complex network
structure (in particular the small world effect) allows to interconnect a large num-
ber of nodes using the direct entanglement percolation strategy. We start with
some numerical simulations and then derive the generating functions for limited
path percolation and compute the limited average size in non-correlated networks
and the Watts-Strogatz model.

3.4.1 Network model, minimum fidelity and maximum path length

We begin by simulating different models of networks. For simplicity we consider
that edges hold a single copy of a two-qubit state ρ with maximum singlet fidelity
F > 1/2 so that the classical limit of f = 2/3 in the teleportation fidelity can
be exceeded. As we saw in Eq. 3.58, the teleportation fidelity fl decreases ex-
ponentially with the distance l and makes such communication scheme useless in
networks such as linear chains or regular lattices, where the typical distance be-
tween two nodes scales as the size of the network. However, as we discussed, the
typical distance in many complex networks scales only logarithmically. The max-
imum distance lmax that information can travel is fixed by the minimum fidelity
fmin required at the end point and by the purity α of the channels:

lmax =
⌊ ln(2fmin − 1)

lnα

⌋
. (3.59)

This means that, even if there exists a path between a sender and a receiver in a
network, it will only be useful if the length of this path is below a certain threshold.
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Figure 3.17. Normalized l-limited mean component size 〈sl〉 /N as a function of l − lav of
the Erdős-Rényi network with c = 2 and network sizes N = 103, 104, 105, 106

(empty blue circles, red squares, yellow diamonds and green triangles). Su-
perposed filled markers is the shape of the path length distribution normalized
with the total number of possible vertex pairs, n̂(l) = 2n(l)/N(N − 1), for
N = 103 (blue squares) and 104 (red circles). Solid black line is Eq. 3.65,
horizontal dashed line is the square of the giant component at φ1 = 1, see
Eq. 3.42.

3.4.2 Path length distribution and limited components
We have performed extensive simulations of networks where neighboring nodes
share a state like the one in Eq. 3.57, and considered the classical limit as the min-
imum required fidelity, fmin = 2/3. For small networks (up to N ∼ 104) we have
performed the calculations over several network realizations and then averaged
the results. For bigger networks, a single network realization is usually enough
due to self-averaging. The l-limited average cluster size 〈sl〉 is a specially relevant
parameter, which relates to the probability that two nodes can communicate with
fidelity f > fmin:

P
(l)
AB = 〈sl〉 − 1

N − 1 . (3.60)

We have thus calculated 〈sl〉 for different network models and sizes. In Fig-
ure 3.17 we plot the normalized size 〈sl〉 /N as a function of l− lav for the Erdős–
Rényi model, with average path length lav ∼ lnN/ ln z. For different network
sizes the curves collapse, supporting a linear N -dependence 〈sl〉 ∼ N for fixed l.
Similar results have been recently found for the average number of nodes at ex-
act distance l from a random central node (Dorogovtsev et al., 2003; Shao et al.,
2008). Regarding the dependence in l, our results show that the average size grows
exponentially with l for l� lav, but deviates from this behavior when l is close to
the average path length, saturating to the maximum component size shortly after
lav. This deviation is due to the depletion of nodes at distance l > lav. In the
same Figure 3.17 we plot the path length distribution, ie the number of pairs n(l)
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Figure 3.18. Normalized l-limited mean component size 〈sl〉 /N as a function of (l −
lav)N−1/2 of the Honeycomb 2-dimensional network with network sizes
N = 1014, 5046, 10086 (blue circles, red squares and yellow diamonds). Su-
perposed filled markers is the normalized histogram of the path length dis-
tribution.

separated by a distance l, normalized by the total number of pairs N(N − 1)/2.
Again, both curves N = 103 and N = 104 collapse, thus supporting a dependence
n(l) ∼ N2. We also found similar results for the scale free and the Watts-Strogatz
models. It is interesting to note that, while lav grows (logarithmically) with the
size of the network, the width of the path length distribution remains constant.
Thus, for large networks a small increase in the purity of the channel α near lav
leads to an abrupt change in 〈sl〉 /N . This is in stark contrast to regular lattices,
where both the mean and the width scale as N1/d. For instance, in Figure 3.18
we plot 〈sl〉 /N and the path length distribution of the Honeycomb 2-dimensional
lattice as a function of (l− lav)N−1/2. The collapse of the curves confirms the N1/d

length-scale dependence.
As an example of a real work network, we considered the OpenPGP Web of

Trust. Figure 3.19 shows the probability that two arbitrary nodes can commu-
nicate with fidelity f > 2/3 as a function of the singlet fraction F . Again, the
comparison with a Honeycomb lattice of the same size shows that the small world
property of the complex networks allows for faithful communication between most
of the nodes in the network for reasonable values of the noise, while in regular
lattices this is only possible for nearly pure states.

3.4.3 Generating functions of the limited components
We will now formalize these observations by deriving analytical results for the
relevant quantities. For this purpose, we now proceed to derive the generating
functions for the limited path percolation problem. In this case, we are interested
in the distribution of sizes s of the components that can be reached by only l steps
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Figure 3.19. Normalized l-limited mean component size 〈sl〉 /N as a function of singlet
fidelity F in the biggest component OpenPGP Web of Trust (red squares)
and a honeycomb 2-dimensional lattice (blue circles), N ∼ 3 · 104.

through edges that are always occupied. As in the non limited case, there are
two different distributions P (l)

s and R
(l)
s for the cases where a random vertex or

a random edge are selected. The two corresponding generating functions, h(l)
P (z)

and h(l)
R (z), read as

h
(l)
P (z) =

z for l = 0,
zgp

[
h

(l−1)
R (z)

]
for l ≥ 1,

(3.61)

and

h
(l)
R (z) =

z for l = 0,
zgr

[
h

(l−1)
R (z)

]
for l ≥ 1.

(3.62)

Note that all edges are occupied with probability one. This could be easy gen-
eralized to a different occupancy probability, by a change of h(l)

R (z) in Eq. 3.62
to z for l = 0,

1− φ+ φzgr
[
h

(l−1)
R (z)

]
for l ≥ 1,

(3.63)

but this is not needed here.
As before, we are now ready to obtain the l-limited average size,

〈sl〉 = dh(l)
P (z)
dz

∣∣∣∣∣
z=1

= 1 + g′p(1)h′(l−1)
R (1). (3.64)
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Figure 3.20. Normalized l-limited mean component size 〈sl〉 /N as a function of l− lav for
(a) the scale-free network and (b) the Watts-Strogatz network. Points are
simulation results for network sizes N = 103, 104, 105, 106 (blue circles, red
squares, yellow diamonds, green triangles), solid lines correspond to Eq. 3.65
and 3.69, horizontal dashed lines are the values of S2

1 .

By solving the recurrence equation given by h′(l)R (1) with the boundary condition
h
′(0)
R (1) = 1 we find

〈sl〉 =
{

1 for l = 0,
1 + g′p(1)1−[g′r(1)]l

1−g′r(1) for l ≥ 1. (3.65)

This equals to the probability that any two nodes will be able to communicate
with fidelity above fmin. Figure 3.20a shows this result for the scale-free model,
with very good agreement between theoretical and numerical results below lav.

As we discussed above, the derivation leading to this exponential growth of
〈sl〉 is valid for l well below lav. Our numerical simulations, however, show that
the validity of this approximation can be extended to values near lav. Figure 3.17
shows that the path length distribution is very peaked around lav, and its width is
independent of N . This suggests, on one hand that our analytical approach holds
true for values of l that fall out of this finite width (approaching from below)—see
Figure 3.20. On the other hand, the finite width implies that if l is a few steps
beyond lav then most of the nodes in the components will be reached before the
limit distance is attained. In this situation, Eqs. 3.61 and 3.62 approach the non-
limited case of Eqs. 2.50 and 2.48 with φ1 = 1, and the size of the giant component
Sl tends to the non-limited size S1. Therefore, for networks with the small world
property, ie lav ∼ logN , one can interconnect with a threshold fidelity (say, the
classical benchmark f = 2/3) any arbitrary pair of nodes in the network provided
that the singlet fraction of the edges scales as F = 1 − O(1/ logN) with the size
of the network, which is clearly less stringent than the analogous constrain for
d-dimensional networks F = 1−O(N−1/d).

We also consider the Watts-Strogatz model, which has a base circular lattice of size
N with an average of βN randomly added shortcuts. In this case the derivation of
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the probability that a random vertex belongs to an l-limited cluster of size s, P (l)
s ,

and its generating function h(l)
P (z) uses the formalism of “local clusters” introduced

in Moore and Newman (2000). These “local clusters” are clusters in the base lattice
(without considering the shortcuts). For a given l, the “local cluster” is always of
size 2l + 1. Then, a shortcut at distance λ − 1 from the starting vertex leads to
a (global) cluster of size s′ with probability P (l−λ)

s′ . A random shortcut emerges
from the starting vertex with probability 1/N , from a vertex at distance λ with
probability 2/N , and lies outside the local cluster with probability (N−2l+1)/N .
Hence, that shortcut will lead to a cluster of size s with a probability given by the
generating function:

f(z) = 1− 1
N

(
2l − 1− h(l−1)

P (z)− 2
l∑

λ=2
h

(l−λ)
P (z)

)
(3.66)

There are 2βN shortcut end-points that can similarly contribute to the total size
of the cluster. Recalling that the generating function of the sum of sizes is the
product of the generating function of each size, we find

h
(l)
P (z) = zl+1f(z)2βN (3.67)

where z(l+1) is the generating function corresponding to the starting “local” cluster.
In the limit of large N this can be simplified to

h
(l)
P (z) = z1+2le

−2β
[

2l−1−h(l−1)
P (z)−2

∑l

λ=2 h
(l−λ)
P (z)

]
. (3.68)

Again, we can obtain the limited average size by taking the first derivative at
z = 1. For l = 0, 〈s0〉 = 1. For l ≥ 1, this results in the recurrence equation

〈sl〉 = 1+2l+2β
(
〈sl−1〉+ 2

l−2∑
λ=0
〈sλ〉

)
= 〈sl−1〉+2+2β (〈sl−1〉+ 〈sl−2〉) , (3.69)

which can be exactly solved (in the latter expression, one has to use 〈s1〉 = 3 +
2β). Figure 3.20b shows this result. We want to stress the fact that from these
generating functions, Eqs. 3.61 and 3.68, one can also calculate the probability
P

(l)
s up to any s by solving s+ 1 iterations of them and using Eq. 2.36.

As a final remark, we want to emphasize that in complex networks the transition
from the regime with small limited components to that of a component that spans
the full non-limited scenario is abrupt. This means that any increase in the channel
purity α, even if small, can lead to a critical effect if it is around the region l ∼ lav.



CHAPTER 4

Distribution of multipartite entanglement

As we have said and exemplified already several times, the structure of a network
strongly affects its functionality. Be it a real-world communication network or an
abstract model capturing the working of a complex system, not only the type of
the relation between the elements of the system but—and sometimes even more
importantly—the shape and organization of such relations define the way it be-
haves. In the previous Chapter, we have seen that quantum information is no
exception, and the distribution of bipartite entanglement in a quantum network
depends on its structure. Quantum mechanics offer in addition the possibility to
enhance the functionality of a network by acting on its structure. In that case, this
was done by means of quantum operations that rewire the connections with no
need to “physically” modify the underlying communication network. Interestingly,
this can be done even when only partial information about this structure is known,
and with only restricted control over the local structure. We studied the case of
complex networks, that model a wide spectra of real-world systems and include
most relevant classical communication networks.

Bipartite entanglement is indeed a key ingredient for many quantum infor-
mation applications. In particular, if one is able to share a perfect, maximally
entangled state with another party it amounts to a perfect quantum channel—
even if only for a single use. Maybe one of the reasons of this ubiquity of bipartite
entanglement in most quantum protocols is that it is already well understood (Ple-
nio and Virmani, 2007; Horodecki et al., 2009). On the contrary, understanding
of multipartite entanglement is still in its infancy, even for very small systems of
few qubits. Advancing in this understanding could shed some light on the design
of new multipartite applications.

An effective way to do that is to examine some classes of states. In this sense,
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a relevant and large family of multipartite entangled states that has been studied
is that of graph states (Hein et al., 2004). For instance, they include paradig-
matic states like Greenberger-Horne-Zeilinger states (Greenberger et al., 1989),
cluster states (Briegel and Raussendorf, 2001), and codewords of error-correcting
codes (Schlingemann and Werner, 2001), they provide some novel quantum com-
munication applications, like secret entangled-state distribution (Dür et al., 2005a)
or can be used to implement existing protocols like quantum repeaters (Zwerger
et al., 2012), they are useful in the study of non-locality (Gühne et al., 2005),
and most importantly they include states which are universal resources (Van den
Nest et al., 2006) for measurement-based quantum computation (Raussendorf and
Briegel, 2001; Raussendorf et al., 2003; Briegel et al., 2009). These states are the
ones that arise from bipartite entangling interactions within a number of qubits
that are in an initial separable state. Their name comes from the fact that they
can be associated to a graph in which nodes correspond to those qubits, and edges
to the interactions that entangle them. This allows an efficient description of such
states with relatively few parameters, but at the same time they still have a rich
variety of features. Current experiments (Lu et al., 2007; Monz et al., 2011) have
succeeded in the experimental implementation of GHZ and cluster states up to
14 qubits (Monz et al., 2011). Graph states can also be extended to states aris-
ing from interactions with different phase, which are then associated to a graph
with weighted edges, each weight depending on the phase of the interaction (Dür
et al., 2005b; Calsamiglia et al., 2005; Hartmann et al., 2005). And quite recently
they have also been extended to states arising from multisite—instead of bisite—
interactions. These are the so-called locally maximally entangleable (LME) states
(Kruszynska and Kraus, 2009).

Following the motivation of the previous Chapter, here we turn now to study
the distribution of multipartite entanglement in the form of graph states. We will
address how noise affects the resulting state, and how can we deal with it. To
do so, in this Chapter we consider the realistic scenario of noisy network channels
and a small, but non-negligible, amount of noise in the local operations and mea-
surements. Again, we are interested in networks with a complex structure. The
global structure can be unknown and only local information may be available to
every node. Our goal here is to propose a protocol to create a large graph using
this underlying network of noisy channels. The protocol should tolerate channels
and operations with errors, scale efficiently with the size of the network, and work
for any network topology, and in particular for complex networks.

Channels linking separate nodes in a network are typically noisy, and pose the
main caveat to the creation of distributed multipartite entangled states with high
fidelity. To overcome this, there exist bipartite (Bennett et al., 1996b; Deutsch
et al., 1996) and multipartite (Dür et al., 2003; Aschauer et al., 2005; Kruszynska
et al., 2006; Glancy et al., 2006; Kay and Pachos, 2007) entanglement purification
protocols that allow either to generate highly purified Bell pairs, which can latter
be used to teleport an arbitrary graph state, or to directly purify the desired graph
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state. These recursive protocols tolerate a reasonable amount of noise in local op-
erations, but require a number of initial copies that grows exponentially with the
size of the state. Other proposals do not use postselection, making the purifica-
tion efficient in terms of the size of the graph state, but come at the expense of a
stricter noise threshold (Goyal et al., 2006). Another option is to use entanglement
pumping without postselection to obtain efficient purification when constructing
the graph state edge by edge (Campbell, 2007). In different approaches, the graph
state is created by a probabilistic growth using non-deterministic entangling oper-
ations (Kieling et al., 2007a; Rohde and Barrett, 2007; Campbell et al., 2007a,b;
Matsuzaki et al., 2010). Recently, Carle et al. (2012) have also proposed a purifi-
cation protocol for the bigger class of LME states.

Generating a graph state in a large complex network poses two main restric-
tions. First, one does not necessarily know the exact structure of the network,
so one needs a protocol that acts only on small subgraphs, independently of the
rest of the network and without need to coordinate. This means, for example,
that a postselection protocol, that depends on the colorability of the graph, does
not satisfy this demand. The same happens for other protocols like the bandaid
(Goyal et al., 2006). Second, the large size of the network makes it unfeasible to
purify a full graph state as in the postselection protocol. Instead, one needs a
protocol that is efficient for large networks. Again, a possible solution is to purify
only small subgraphs whose size do not depend on N .

Here, we investigate the advantages of generating and purifying small GHZs
that reproduce the local structure of the network, and merge them in order to
distribute a network-wide graph state. GHZs have a fixed size that depends on
the degree of each node and is thus independent of the size of the network. Hence,
this protocol is efficient in the size while it still maintains the high thresholds of
the recurrence schemes. We benchmark this protocol with two other protocols
that generate high-fidelity bipartite states between a node and the rest of the net-
work, which are then used to distribute a locally generated graph state. We use
the fidelity of the graph state as a figure of merit to compare the three proto-
cols. The fidelity decays exponentially with the size of the network for a constant
level of noise, so we also use its decay rate. It turns out that both quantities
can be understood as the partition function and free energy of a thermodynamic
system, respectively, and thus standard methods of statistical classical mechanics
are readily used.

The Chapter is structured as follows. First, in Section 4.1 we introduce graph states
and their formalism. In Section 4.2 we present the network and the noise model
we consider. We then review in Section 4.3 the multipartite purification protocol
of Dür et al. (2003) that we will use later, and give the first-order expression of
the fixed point of the purification of a GHZ. Then, in Section 4.4 we present the
protocol that we propose and two other protocols based on bipartite purification
that we use as a comparison. In Section 4.5 we present the two figures of merit—
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Figure 4.1. Graph state of 5 qubits. Dots represent qubits, initially in state |+〉. Edges
represent entangling interactions between qubits. Alternatively, in the stabi-
lizer formalism, there is an operator, eg Kb = XbZaZc, associated to each
qubit.

the fidelity of the graph state and its decay rate—, and relate them with an analog
partition function and free energy of a classical Ising-type Hamiltonian. Finally, in
Sections 4.6 and 4.7, we apply the protocols to the creation of a linear cluster state,
for which we obtain exact results, and of a graph state associated to a complex
network.

4.1 Graph states
A graph state (Hein et al., 2004) is a quantum state associated to a graph G. There
exist two equivalent ways to establish this correspondence (see Figure 4.1). One
has a clearer physical meaning, where the graph state is constructed by applying
successive interactions between qubits initially prepared in a separable state. The
other one describes the graph state in terms of its stabilizer, a subgroup of the
Pauli group on N = |V | qubits. This second description turns out to be very
convenient, as the group can be compactly described by the N generators of the
stabilizer group. In this Section, we first introduce these two formalisms, and then
present mixed graph states and operations under these descriptions.

4.1.1 Graph states in the interaction picture
The interaction picture describes graph states as prepared from an initial separable
state by a successive application of entangling interactions. Let X, Y and Z be the
Pauli operators (often denoted as σx, σy and σz, or σ1, σ2 and σ3). These operators,
together with the identity I (also denoted 11 or σ0) and the multiplicative factors
±1,±i, form the Pauli group for a single qubit,

P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (4.1)
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In the interaction picture, a graph state is set initially in the product of N
eigenstates of X, |+〉 = 1√

2 (|0〉+ |1〉). Since there are no interactions yet, the
associated graph is the empty graph of size N . Then, a graph state |0〉G associated
to an arbitrary graph G is created by applying a two-qubit unitary Uu,v for every
edge (u, v) ∈ E,

|0〉G =
∏

(u,v)∈E
Uu,v |+〉⊗N . (4.2)

The state is completely characterized by the simple, undirected graph G if these
unitaries commute [Uu,v, Uv,w] = 0, are symmetric Uu,v = Uv,u and all qubits
interact through the same unitary (Hein et al., 2006). In this thesis, we deal ex-
clusively with unweighted graph states, for which unitaries Uu,v are the controlled
phase gate, or cphase:

Uu,v ≡ |0〉u〈0| ⊗ Iv + |1〉u〈1| ⊗ Zv

= 1
2 (Iu ⊗ Iv + Zu ⊗ Iv + Iu ⊗ Zv − Zu ⊗ Zv) . (4.3)

The subindex in the operators denote on which qubit they operate. In general,
by Ou we denote an operator acting non-trivially on qubit (vertex) u and as the
identity on the rest of the graph. Note that U2

u,v = I ⊗ I, so applying a cphase
Uu,v to a graph state with an already existing edge (u, v) has the effect of deleting
this edge. Let us also define here another important two-qubit gate, the controlled-
not or cnot, that will be later used. A cnot with control qubit u and target
qubit v is defined as

cnotu→v = |0〉u〈0| ⊗ Iv + |1〉u〈1| ⊗Xv

= 1
2 (Iu ⊗ Iv + Zu ⊗ Iv + Iu ⊗Xv − Zu ⊗Xv) . (4.4)

Note that the cnot is not symmetric. To keep expressions more compact, we will
omit in the following the symbol ⊗ when it is does not induce confusion.

4.1.2 Graph states in the stabilizer formalism
A common, alternative description of graph states is the stabilizer formalism
(Nielsen and Chuang, 2000, p. 453). Within this formalism, a stabilizer S is a
subgroup of the Pauli group on N qubits whose elements commute and that does
not contain the element −I. A state |ψ〉 is said to be stabilized by S if it is a fixed
point under the action of every S ∈ S:

S |ψ〉 = |ψ〉 ∀S ∈ S. (4.5)

For a graph state associated to G, we define N stabilizer operators KG
u , one

for each vertex u, as
KG
u = Xu

∏
v∈Nu(G)

Zv. (4.6)



92 Distribution of multipartite entanglement

A pure graph state |µ〉G, with µ ∈ {0, 1}N a binary vector of length N , is a
common eigenstate of all stabilizer operators with

KG
u |µ〉G = (−1)µu |µ〉G ∀u ∈ V, (4.7)

where µu is the u-th component of µ. The set {|µ〉G} form the graph state basis.
Since Zu anticommutes with Ku and commutes with the rest of Kv, v 6= u, any
graph-basis element can be expressed as

|µ〉G =
∏
u∈V

(Zu)µu |0〉G . (4.8)

In the following, we will omit G when the graph is clear by context.
The stabilizer formalism is specially interesting because it gives a compact

description of graph states. In particular, one does not need to resort to the full
group, but just to its generators: a set of elements {g} from which any other
element of the group can be obtained by multiplication. This means that one has
to check only this generators to see if a given state is stabilized by some S. The
fact that there are at most log |S| generators makes this formalism very efficient.
In addition, one can see that the effect of unitaries U on a state |ψ〉 can be tracked
by the transformation of the generator UgU † (Nielsen and Chuang, 2000).

4.1.3 Mixed graph states
Due to decoherence, a graph state will be in general in a mixed state. This can be
understood as a pure graph state that undergoes a certain noise process, modeled
as the action of Pauli matrices acting on both sides of the pure state |0〉G〈0|. This
leaves the graph state in a general form ρG, with a certain fidelity

F = G〈0| ρG |0〉G (4.9)

with the original pure state. As {|µ〉} form a basis, ρG can be expressed as

ρG =
∑
µ,ν

λµ,ν |µ〉 〈ν| , (4.10)

where the sum is over all possible µ and ν. A state like this can be depolarized
into a diagonal form by randomly applying local Pauli operations (Aschauer et al.,
2005; Dür et al., 2005c). The random local Pauli operations correspond to the
stabilizer operators Ku. Using Eq. 4.6, one sees that the action of Ku on |µ〉 〈ν| is

Ku |µ〉 〈ν|Ku = (−1)µu+νu |µ〉 〈ν| . (4.11)

Hence, applying Ku with probability 1/2 and otherwise leaving ρG untouched, one
gets rid of the elements λµ,ν with µu 6= νu. To fully depolarize ρG, this has to be
done for all Ku. Note also that the diagonal elements are left unchanged, and in
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particular the fidelity, equal to λ0,0, remains the same. In the remaining of the
Chapter we use λµ ≡ λµ,µ and consider mixed graph states diagonal in the graph
state basis:

ρG =
∑
µ

λµ |µ〉 〈µ| . (4.12)

Instead of using the standard graph state basis, for our purpose, it will more
convenient to work in the operator basis. Let us define the stabilizer operatorKG

x :

KG
x =

∏
u∈V

(
KG
v

)xv
. (4.13)

Here x is a binary vector ofN elements (either 0 or 1), x = (x1x2 . . . xN ) ∈ {0, 1}N ,
that indicates which stabilizer is included in the product KG

x . The 2N different
products of stabilizers KG

x are a subset of the N -qubit Pauli operators (which are
4N ), and are sufficient to generate graph diagonal states. Using Eqs. 4.7 and 4.12,
a state in this basis takes the form

ρG = 1
2N

∑
x

〈
KG
x

〉
KG
x , (4.14)

where
〈
KG
x

〉
=
∑
µ λµ(−1)µ·x and, similarly as before, the sum is over all possible

x. The fidelity of a mixed graph state ρG with respect to |0〉G is thus the sum of
these expected values:

FG = G〈0| ρG |0〉G = λ0 = 1
2N

∑
x

〈
KG
x

〉
. (4.15)

4.1.4 Operations and measurements on graph states
Using their commutation relations, the effect of the Pauli operators on Kx is

ZuKxZu = (−1)xuKx, (4.16)
XuKxXu =

∏
v∈Nu

(−1)xvKx, (4.17)

YuKxYu = (−1)xu
∏
v∈Nu

(−1)xvKx, (4.18)

so these unitaries map diagonal graph states into diagonal graph states. A cphase
Uu,v adds an edge between u and v, if they were not connected, or removes it, if
the edge already existed. The effect on Kx is

Uu,vKxUu,v = Kx (Zv)xu (Zu)xv . (4.19)

The action of Pauli measurements can also be easily described in this formalism
as a transformation of the graph (up to some local unitaries). Measurement of Z
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simply disconnects the measured qubit from the rest of the graph, while X and
Y transform the neighborhood of the measured qubit and then disconnect it. In
terms of the stabilizer operators, the measurement of Zu commutes with all Kv,
for v 6= u, and anticommutes with Ku. Thus,

[I + (−1)mZu]Kx [I + (−1)mZu] = [I + (−1)mZu]Kxδ0,xu , (4.20)

where m = {0, 1} labels the measurement outcome {+1,−1} respectively. After
tracing out qubit u, the new stabilizer is

(−1)m·
∑

v∈Nu
xvK ′xδ0,xu , (4.21)

where the new K ′x corresponds to a new graph G′ obtained form G by removing
vertex u and its attached edges. The spurious phase factor in Eq. 4.21 can be
cancelled by applying a unitary

(∏
v∈Nu Zv

)m. Similarly, measurements of Xu or
Yu also result in the disconnection of the measured qubit, but in these cases the
remaining graph is transformed by local complementations of the neighborhood
of u, as described in (Hein et al., 2006). We will be more explicit in the concrete
cases where we apply these measurements.

4.2 Network and noise model
We consider a network where nodes are spatially separated. Some of the nodes are
connected through quantum links, which we model as a noisy depolarizing channel
on one qubit with error parameter pc,

T (u)
c = (1− pc)[I] + pc

4

3∑
i=0

[σ(u)
i ]. (4.22)

The square brackets [A] denote that A acts on both sides of the state, as [A]ρ =
AρA†, and σi are I, X, Y , Z for i = 0, 1, 2, 3, respectively. A Pauli measurement
on u is modeled as a perfect measurement preceded by a depolarizing channel T (u)

1
with error probability p1 on that qubit,

T
(u)
1 = (1− p1)[I] + p1

4

3∑
i=0

[σ(u)
i ]. (4.23)

A noisy two-qubit gate (eg a cphase or a cnot) on qubits u and v is modeled
as an ideal gate followed by the two-qubit depolarizing channel on u, v with error
parameter p2,

T
(u,v)
2 = (1− p2)[I] + p2

16

3∑
i,j=0

[σ(u)
i ⊗ σ

(v)
j ] (4.24)

Gates can only be applied locally, ie on qubits within the same node.
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In the stabilizer basis, the effect of each noise source is easily tracked: it
multiplies each stabilizer element by a coefficient, and keeps the graph state in
diagonal form. Let us consider for example the effect of noise T (u,v)

2 on Kx. The
first part of Eq. 4.24, that proportional to 1− p2, does not affect Kx. Each term
in the second part, that proportional to p2, will at most induce a change of sign.
Using Eqs. 4.16 to 4.18, one easily finds that the sign change can only occur if Kx

acts non-trivially on u or v, ie if exists at least one xa = 1 for a ∈ u∪ v ∪Nu ∪Nv.
In addition one sees that half of the 16 terms in the sum induce a sign change
which cancel the contribution of the other half. Hence, the noise T (u,v)

2 does not
alterKx unless x has support in u or v, in which case it gets multiplied by a factor
(1− p2):

T
(u,v)
2 (Kx) = (1− p2)θ(xu,xv ,xNu ,xNv )Kx (4.25)

where θ(x) ≡ 1 − δ(0,x) and xNu = (xv1 . . . xvk) for all va ∈ Nu. Noise T (u)
1

behaves similarly. In this case, the sign is changed with probability p1/2 unless
xu = 0 and

⊕
a xa = 0 for a ∈ Nu, so the multiplying coefficient is

(1− p1)θ(xu,
⊕

v∈Nu
xv)
. (4.26)

Note thus that these noise sources affect the qubits on which the gates act, plus
their neighbors.

Finally let us point that we do not associate any noise to the local “correcting”
unitaries performed in order to bring the post-measurement states to a standard
graph form. We refer to these unitaries in our protocols to simplify bookkeeping,
but their action can be pushed forward (or commuted) till the end of the protocol,
and hence the resulting state is exactly equivalent as a resource of entanglement.

4.3 Multipartite purification protocol
The recursive protocol of Dür et al. (2003) (see also Aschauer et al., 2005) is
an entanglement purification protocol for multipartite, two-colorable graph states,
which has also been extended to general graph states (Kruszynska et al., 2006). It
operates on two identical copies

ρ1 ⊗ ρ2 = 1
22N

∑
x1,x2

〈
K(1)
x1

〉〈
K(2)
x2

〉
K(1)
x1 K

(2)
x2 (4.27)

of a two-colorable graph state of size N (with colors A and B), and consists of
two subprotocols (P1 and P2), each of which purifies one of the two colors. Here
K

(i)
xi is a stabilizer element of state ρi. In each subprotocol, information about ρ1

is transferred to ρ2. Then, ρ1 is kept or discarded depending on the outcomes of
measurements on ρ2.
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ρ1 ρ2

a1 ⊕ a2

b1

a2

b2 ⊕ b1

Figure 4.2. Subprotocol P1. In this example, two copies ρ1 and ρ2 of a linear cluster
state of four qubits. Qubits in color A and B are colored as red and green,
respectively. A dashed arrow from qubit u to v corresponds to a cnotu→v

(u is the control qubit). The effect in the indices of the stabilizer elements is
shown. After the cnots, nodes in ρ2 are measured in X (those belonging to
A) and in Z (those in B).

Let us briefly review subprotocol P1, depicted in Figure 4.2, in the basis Kx.
In this subprotocol, a cnot2→1 is applied to every node in A, and a cnot1→2 to
every node in B. This transforms the state to

1
22N

∑
x1,x2

〈
K(1)
x1

〉〈
K(2)
x2

〉
K

(A1)
a1⊕a2K

(B1)
b1

K(A2)
a2 K

(B2)
b2⊕b1

, (4.28)

where a and b are the elements of x that correspond to colors A and B. The
stabilizer K(A1)

a1⊕a2 corresponds to qubits of ρ1 in color A, and the modulo 2 sum-
mation of the index a1 ⊕ a2 is made elementwise. To keep notation short, we
contract K(A1)

a1⊕a2K
(B1)
b2

= K
(1)
a1⊕a2,b2

, where the first subindex corresponds to color
A and the second to color B. Then, every node in ρ2 is measured: X in nodes
of color A (outcomes ξ) and Z in nodes of color B (outcomes ζ). This gives the
(unnormalized) state∑
x1,x2

(−1)(ξ⊕
⊕

ζ)·a2
〈
K(1)
x1

〉〈
K(2)
x2

〉
K

(1)
a1⊕a2,b1

δ0,b2⊕b1

=
∑
x1,a2

(−1)(ξ⊕
⊕

ζ)·a2
〈
K

(1)
a1,b1

〉〈
K

(2)
a2,b1

〉
K

(1)
a1⊕a2,b1

, (4.29)

where ξ ⊕
⊕
ζ is a binary vector with components ξu ⊕

⊕
v∈Nu ζv for all u ∈ A.

The state is selected if ξ⊕
⊕
ζ = 0. Summing over all the possible outcomes, the

final (post-selected) state after P1 is

1
2N |A|

∑
x1,a2

〈
K(1)
a1 K

(1)
b1

〉
1

〈
K(2)
a2 K

(2)
b1

〉
2
K

(A1)
a1⊕a2K

(B1)
b1

. (4.30)

Subprotocol P2 is equivalent, with colors A and B interchanged. The purification
protocol is the successive application of subprotocols P1 and P2. It can be seen
that this map has a fixed point that has a larger fidelity than the unpurified states.
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For our protocol, we need the fixed point of a GHZ of size j+ 1, with a central
node colored as A and j leaves colored as B (ie |A| = 1 and |B| = j). Noise can
come from cnots as 1− p2 and from measurements in state ρ2 as 1− p1:

〈KaKb〉(P1) = 1
2

1∑
a2=0

〈
K

(1)
a⊕a2K

(1)
b

〉〈
K(2)
a2 K

(2)
b

〉
(1− p2)θ(a,a2,

⊕
b∈B b)

∏
b∈B

(1− p2)θ(a,a2,b)

(1− p1)a2
∏
b∈B

(1− p1)a2 (4.31a)

〈KaKb〉(P2) = 1
2d

1∑
b2=0

〈
K(1)
a K

(1)
b⊕b2

〉〈
K(2)
a K

(2)
b2

〉
(1− p2)θ(a,

⊕
b∈B b2,

⊕
b∈B b)

∏
b∈B

(1− p2)θ(a,b2,b)

(1− p1)
⊕

b∈B b2
∏
b∈B

(1− p1)b2 . (4.31b)

For simplicity (see also the discussion in Section 4.5), we take a single error param-
eter p = p1 = p2 and approximate 〈KaKb〉 at first order in p. Let the unnormalized
〈KaKb〉(P1) ∼ 1− β̃a,|b|p and 〈KaKb〉(P2) ∼ 1− α̃a,|b|p. Composing P1 and P2 we
can find the fixed point at first order in p. In P1, each β̃a,|b| equals α̃0,|b| + α̃1,|b|
plus a constant term:

β̃0,|b| = α0,|b| + α1,|b| + j + 1 +
⌈ |b|

2

⌉
, (4.32a)

β̃1,|b| = α0,|b| + α1,|b| +
3
2(j + 1). (4.32b)

These terms are normalized dividing them by 〈11〉 = 〈K0K0〉, so the normalized
first-order coefficients for P1 read βa,|b| = β̃a,|b| − β̃0,0. Similarly, for P2:

α̃0,|b| =
1
2j
∑
b2

(β0,b⊕b2 + β0,b2) + j + 1 +
⌈ |b|

2

⌉
(4.33a)

α̃1,|b| =
1
2j
∑
b2

(β1,b⊕b2 + β1,b2) + 3
2(j + 1) (4.33b)

After normalization (dividing by 〈K0K0〉),

〈K0Kb〉 ∼ 1−
⌈ |b|

2

⌉
p, (4.34a)

〈K1Kb〉 ∼ 1− (j + 1)p. (4.34b)
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The fidelity is

F ∼ 1− 1
2j+1

j∑
b=0

(
j

b

)[⌈
b

2

⌉
+ (j + 1)

]
p = 1− 5

8(j + 1)p. (4.35)

This fixed point is only reached if the initial states have a fidelity above a
certain minimum fidelity that depends on the size of the state and on the noise
of operations p (Aschauer et al., 2005). There is also a threshold in this noise,
above which the purification protocol cannot increase the fidelity. In linear cluster
states, this threshold is independent of the size of the state. However, in the
purification of GHZ states the threshold decreases with N . This is because the
number of errors that can affect a given node depends on its degree, and in GHZ
the central node has a scaling degree N−1. Typically, the error threshold depends
on the maximum degree of the graph state. Here we will assume that the GHZ
subgraphs are small enough so as to guarantee that the noise of the operations
falls below this threshold. Also, we consider that the channel noise is within the
working parameters of the purification protocol. Although the noise parameters
of the channel do not enter explicitly in the final fidelity, it is their presence that
imposes the use of purification which in turn introduces noise.

4.4 Protocols
We propose a protocol to distribute a graph state with the structure of a general
quantum communication network, of arbitrary topology, associated to graph G.
Noise pc in the communication channels is considered to be relatively high, so some
sort of purification or error correction is in order. The protocol uses the structure
of the network to distribute several copies of small subgraphs between neighbors,
and purifies them by means of multipartite purification. These subgraphs are
GHZ states, which are associated to a star graph with a central node of degree j,
connected to j leaves of degree 1. In order to benchmark our protocol, we also
consider two reference protocols that distribute bipartite states between a central
node, which locally creates the desired graph state, and the rest of the network.
The bipartite states are then used to teleport the locally created graph state.
Since this central node may not be directly connected to the rest of the network,
quantum repeaters (Briegel et al., 1998) are used to establish purified bipartite
states between this node and all the network’s nodes.

In all cases, we consider the same multipartite purification protocol for 2-
colorable graph states (Aschauer et al., 2005) described in the previous section.
As we discussed, the noise threshold of this purification scheme depends on the
degree of the central qubit of the state that is purified, and goes from ≈ 0.06 in
a bipartite state (ie a GHZ with central degree 1) to ≈ 0.02 for a GHZ of central
degree 9. This poses a limit in the maximum degree of a network for which the
protocols can be used. Hence, we work under the assumption that the errors in
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the local operations are low—as compared to the (finite) degree of the subgraphs,
jp� 1—and that the channel noise can be significant, but also low enough so that
the minimum threshold fidelity required for the purification protocol to succeed
can be attained. As we have seen in Section 4.3, at first order in p = p1 = p2, the
output state fixed point of this purification scheme is given by〈

Kxa
a

∏
b∈Na

Kxb
b

〉
= 1−p

[
xa

⌈∑
b xb
2

⌉
+xa(j + 1)

]
, (4.36)

where a is the central node and b the leaves of the GHZ, j is the number of leaves
and the overline in xa represents the bit-complement, xa = xa ⊕ 1.

Note that the extensive use of quantum repeaters in the first two protocols
renders them extremely inefficient. Nevertheless, we will find that the performance
in terms of attainable fidelity is still comparable to that of our more efficient
subgraph protocol.

4.4.1 Bipartite A protocol
In the first protocol (depicted in Figure 4.3a), purified, but still noisy, entangled
states are created between a central node and all the others by means of quantum
repeaters. This central node then teleports a locally generated state to all the
other nodes. For simplicity, in protocols A and B we assume that the central
node is sending all qubits through purified channels, including his own. This adds
a source of noise that would not be strictly necessary, but its effect is small for
large enough networks. In cases, like complex networks, where the network is
not necessarily connected, it is understood that there is a central node for each
connected component distributing the corresponding graph state.

The local state ρG, which mimics the structure of the network, is created by
initializing N qubits in the state stabilized by X and then applying cphases
between neighbors. Then, the noisy Bell states between the central node and all
the others are used to teleport the corresponding qubits (see Figure 4.3a). We
label qubits in the local graph as u ∈ V (G). For each node in the network, there is
a bipartite state ρgu of two qubits, ua, ub ∈ V (gu) and one edge (ua, ub) ∈ E(gu).
Qubit ua belongs to the central node, while ub is in the corresponding node in the
network. In order to account for the errors in the teleportation Bell–measurement,
we implement it by a cphase on (u, ua) followed by X measurements on u and ua.

To simplify the explanation, we will start analysing the generation of the graph
state in a noiseless scenario. The effect of noise will be accounted for latter. The
state before teleportation is

ρG ⊗
⊗

u∈V (G)
ρgu , (4.37)

with

ρG = 1
2N

∑
x

KG
x (4.38a)
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u

v
ua

ub

va

vb

(a) Bipartite A protocol.

u

v

ub

vb

(b) Bipartite B protocol.

Figure 4.3. Bipartite A and B protocols. The upper green area represents the “central”
node, where the local graph state with the structure of the network is gen-
erated. The lower green circles are nodes in the network. Small, gray dots
correspond to qubits, and lines connect neighbors. (a) Rectangles in red indi-
cate Bell measurements involved in the teleportation of the local graph states.
(b) Dashed lines, corresponding to the edges of the local graph, are created
after solid lines, corresponding to the distributed bipartite states. Squares in
red indicate X measurements used to teleport the local graph states.

and

ρgu = 1
4

∑
xua ,xub

(Kgu
ua )xua (Kgu

ub
)xub . (4.38b)

Graphs gu correspond to the bipartite states with qubits ua and ub used for tele-
portation, ie Kgu

ua = XuaZub . The action of the cphase Uu,ua affects only the
stabilizers KG

u → KG
u Zua and Kgu

ua → Kgu
uaZu. The measurement of Xu anticom-

mutes with all KG
v , v ∈ Nu(G), and with Kgu

uaZu, while that of Xua anticommutes
only with KG

u Zua and Kgu
ub
. Thus, each term changes to

[1 + (−1)muaXua ] [1 + (−1)muXu]Kx (Zua)xu
(
Kgu
uaZu

)xua (Kgu
ub

)xub
× δ0,xua⊕

⊕
v∈Nu

xv
δ0,xu⊕xub , (4.39)

where mu and mua are the measurement outcomes. Tracing out qubits u and ua
and correcting the state with (Zub)

mu (Xub)
mua we obtain

K ′xδ0,xua⊕
⊕

v∈Nu
xv
δ0,xu⊕xub , (4.40)

with K ′x associated to a new graph G′ where vertex u has been substituted by
vertex ub. Teleportation of all local qubits results in the desired distributed state.

Noise can now be introduced as the multiplicative factors in front of the sta-
bilizer elements of Eq. 4.37. Here, the order of the cphase gates used to generate
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the local graph matters, as qubits receive noise from gates performed at neighbors
which are already connected to them. There is thus a noise (1− p1)xu correspond-
ing to the preparation of each node in Xu, and a (1 − p2)θ(xu,xv ,xÑu ,xÑv ) for each
edge in the local state, where the tilde in Ñu labels that we consider the neighbor-
hood of u at the moment the cphaseu,v is performed. Additionally, and using that
xua =

⊕
v∈Nu xv and xub = xu, in each teleportation the cphase introduces noise

as (1− p2)θ(xu,xNu ), and the measurements as (1− p1)xu+
⊕

v∈Nu
xv . Finally, there

is a
〈

(Kgu
ua )
⊕

v∈Nu
xv(Kgu

ub
)xu
〉
term from the purified Bell states. This results in a

final distributed state ρ = 1
2N
∑
x 〈Kx〉Kx with

〈Kx〉 =
∏
u∈V

[
(1− p1)xu

〈
(Kgu

ua )
⊕

v∈Nu
xv(Kgu

ub
)xu
〉

(1− p2)θ(xu,xNu )(1− p1)xu+
⊕

v∈Nu
xv
]

∏̃
(u,v)∈E

(1− p2)θ(xu,xv ,xÑu ,xÑv ), (4.41)

where the tilde over Π denotes that the edges are introduced in a certain order. An
explicit expression for the Bell state correlators for the postselection purification
protocol at first order in p can be obtained from Eq. 4.36:

〈(Kua)xua (Kub)
xub 〉 ∼ 1− (x̄uaxub + 2xua)p. (4.42)

4.4.2 Bipartite B protocol
The previous strategy can be improved by directly connecting the local ends of Bell
pairs by means of cphases, and then teleporting the local graph state performing
only one X measurement per node—instead of the various sources of noise induced
by the Bell-measurement (cphase and two X measurements). The initial state
is now

⊗
u∈V (G) ρgu , where qubits are labeled as u if they belong to the central

node and ub if they are in the distributed nodes (see Figure 4.3b). The sources
of noise are the non-unit purity of Bell pairs, cphases used in the preparation
of the local state and the measurement involved in each teleportation. As in the
previous case, the order of cphases is important: each contributes to a noise with
(1 − p2)θ(xu,xv ,xub ,xvb ,xÑu ,xÑv ). Note that the cphases are performed on qubits
that are already connected to nodes in the network and thus affect the distributed
qubits ub. The calculation is similar as before and results in a final distributed
state with correlators

〈Kx〉 =
∏
u∈V

[〈
(Kgu

u )xu(Kgu
ub

)
⊕

v∈Nu
xv
〉

(1− p1)xu
]

∏̃
(u,v)∈E

(1− p2)θ(xu,xv ,
⊕

w∈Nu
xw,
⊕

w∈Nv
xw,xÑu ,xÑv )

. (4.43)
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u

uw

v
vu

N (in)
u

N (out)
u

Figure 4.4. Purify subgraphs and merge. Green circles are nodes in the network. Nodes
on the right are the outgoing neighborhood of u, while those on the left are the
incoming neighborhood. Small, gray dots correspond to qubits, and lines con-
nect neighbors. Lines and squares in red indicate cphases and measurements
involved in the connection of subgraphs.

4.4.3 Purify subgraph and merge
In this strategy, subgraph states of small size (N independent) are distributed and
purified, and then interconnected locally at each node to form the desired structure.
The protocol follows two steps (see Figure 4.4). To each node of degree k we assign
an outgoing neighborhood, with j nodes, and an incoming neighborhood, with i
nodes, so k = j + i. First, each node prepares a GHZ of size j + 1. A GHZ
graph state with j + 1 qubits is associated to a star graph gu, ie a graph with a
central node and j external nodes, called leaves. Then, each qubit corresponding
to a leaf of the GHZ is sent to one of the outgoing neighboring nodes through the
depolarizing channels. Several copies of this distributed state are created and then
purified using the bicolorable graph state protocol of Dür et al. (2003). The final
purified subgraph state with central qubit u is

ρu = 1
2j

∑
xu,x

N (out)
u

〈
(Kgu

u )xu
∏

uw∈N (out)
u

(
Kgu
uw

)xuw〉 (Kgu
u )xu

∏
uw∈N (out)

u

(
Kgu
uw

)xuw ,
(4.44)

where the correlators of the fixed point of the purification scheme are given in
Eq. 4.36. Here uw denotes the leaf qubit that has been sent to w ∈ N (out)

u (G).
At the same time, each node receives i = k − j leaves corresponding to the GHZ
states created at its incoming neighborhood.

In the second step, each node connects the central qubits of their GHZ state
with the leaves they have received. The connection is made by performing a
cphase between the two qubits u and vu and a Y measurement of the received
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qubit vu. The effect of the Y measurement is to add an edge between the two
central nodes u and v and destroy de measured qubit vu.

The action on the stabilizers can be seen in a single connection example between
a central qubit u of a subgraph and a leaf qubit vu of an incoming subgraph
(see Figure 4.4). We focus on the stabilizer elements (Kgv

v )xv(Kgv
vu)xvu (Kgu

u )xu , as
all the others remain unchanged. The action of a cphase between u and vu is
Kgv
vu → Kgv

vuZu and Kgu
u → Kgu

u Zvu . The measurement of Yvu anticommutes with
the new stabilizer operators at v, vu, and u, so each term changes to

[1 + (−1)mYvu ] (Kgv
v )xv(Kgv

vuZu)xvu (Kgu
u Zvu)xuδ0,xv⊕xvu⊕xu . (4.45)

Tracing out vu and correcting the state depending on the measurement outcome
m with exp[(−1)miπ4Zv] exp[(−1)miπ4Zu], we obtain

(K ′v)xv(Kgu
u Zv)xuδ0,xv⊕xvu⊕xu , (4.46)

where K ′v is the stabilizer of v with qubit vu changed to u.
Noise added by the measurement enters as a coefficient (1− p1)xu⊕xv , where

we used Eq. 4.26 together with xvu = xu ⊕ xv. Noise by a cphase between one of
the incoming leaves vu and u adds

(1− p2)
θ(xu,xv ,x

N (out)
u

,x
Ñ (in)
u

)
, (4.47)

where Ñ (in)
u is the incoming neighborhood that has already been connected to u.

Finally, note that if a node has j = 0 it does not need to prepare any GHZ
state. In this case, one of the incoming leaves is used as the qubit to which all
the other leaves are connected. If there are no incoming leaves, then the node is
isolated (and is thus prepared in the state stabilized by X). This means that the
contribution of the GHZ distribution and purification at a node u is

〈Kgu
x 〉



〈
(Kgu

u )xu
∏

w∈N (out)
u

(Kgu
uw)xu⊕xw

〉
if j > 0, (4.48a)

1 if j = 0, i > 0, (4.48b)
(1− p1)xu if j = i = 0. (4.48c)

All in all, the final correlators for the subgraph protocol can be written as,

〈Kx〉 =
∏
u∈V

〈Kgu
x 〉

∏
va∈N ′u

[
(1− p1)xu⊕xva (1− p2)θ(xu,xNout

u
,xv1 ,...,xva )] . (4.49)

Here, N ′u denotes the incoming neighborhood N in
u if j > 0, or the incoming neigh-

borhood minus the first incoming neighbor, N in
u \v1, in the case j = 0 where the

first neighbor v1 is used as the qubit to which all remaining edges are connected.
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4.5 Fidelity

The fidelity for a distributed graph G is FGN = 1
2N
∑
x

〈
KG
x

〉
, and is in general

hard to calculate. In order to simplify the analysis, here we will use a single
error parameter p = p1 = p2. Then, in the case of the linear cluster state, which
has a simpler form, we will differentiate again between the two error parameters
and compare their effect in the protocol. Most of the results presented here can
be extended to more general dependencies between the cphase and measurement
errors, which strongly depend on the physical implementation. With this particular
parametrization, the effect of errors enter as factors

(1− p)h(x) = e−βh(x), (4.50)

where we have defined β = − log(1− p). To first order in p, the correlators of the
purified graph states, Eq. (4.36), can also be written in the same form,

1− h(x)p ∼ e−ph(x) ∼ e−βh(x). (4.51)

Hence, the correlators of the generated graph state can be written as

〈Kx〉 = exp[−βHG(x)], (4.52)

where HG(x) is the sum of the different noise terms h(x). The fidelity thus
resembles the partition function of a system with Hamiltonian HG(x) and inverse
temperature β:

FGN = 1
2N

∑
x

e−βHG(x). (4.53)

The “Hamiltonian” HG(x) can be expressed as the sum of many-body local
Hamiltonians of the form

θ(x1, x2, . . . , xn) = 1− x1 x2 . . . xn (4.54a)
xu ⊕ xv = xuxv + xuxv (4.54b)

xu

⌈∑j
b=1 xb
2

⌉
= 1

2

xu j∑
b=1

xb + xu

j⊕
b=1

xb

 . (4.54c)

The last term
⊕j

b=1 xb in Eq. 4.54c is a j-body interaction term. By recursively
using Eq. 4.54b, this term can be seen to be equal to the sum over all index permu-
tations of

∑
a odd x1 . . . xaxa+1 . . . xj . That is, we have rephrased our problem of

computing the fidelity of a distributed large graph state as that of computing the
thermal properties of a classical many-body Ising-type system, where the indices
x take the role of classic spins (with possible values 0 and 1). The correspond-
ing Hamiltonian will inherit the topology of the underlying graph and its precise
expression will depend on the graph-growth protocol used.
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We are interested in the rate at which FGN decays,

βfGN = − 1
N

logFGN , (4.55)

where NfGN is the analog of the free energy of the system. A good reason to study
this quantity is that in statistical systems such as a complex network, modeled as
an ensemble, the partition function (here, the fidelity) in itself is not an extensive
quantity, while the free energy is typically extensive and self-averaging (see, for
example, the discussion in Amit, 1989, p. 188).

We can further exploit the statistical physics analogy and apply the known
methods and understanding to compute the rate at which the fidelity decays for
the different proposed protocols. We are interested in a regime where the noise
in the operations is low, which corresponds to the high temperature limit. In
addition, in the cases under study, each spin (or node) is effectively coupled to
several spins, either as nearest- or second-nearest neighbors. These are conditions
for which mean-field approximation is very well suited: Eqs. 4.54a to 4.54c can be
linearized using the standard mean-field approximation to express the Hamiltonian
as the sum of a constant term plus linear terms in xu. For this purpose we take
xu → s + δu (and xu → 1 − s − δu) where s is the value of the mean–field and
δu are the arguably small fluctuations of xu around its mean value. Keeping only
the linear terms in the fluctuations, the different terms present in the Hamiltonian
become:

θ(x1, x2, . . . , xn) = 1− (1− s)n + (1− s)n−1
n∑
a=1

δa (4.56a)

xu ⊕ xv = 2s(1− s) + (1− 2s)(δu + δv) (4.56b)

xu

⌈∑
b xb
2

⌉
= 1− s

2

js+
j∑
b=1

δb

− δu
2 js

+ 1− s
2

1
2
[
1− (1− 2s)j

]
+ (1− 2s)j−1

j∑
b=1

δb


− δu

2
1
2
[
1− (1− 2s)j

]
. (4.56c)

With this linearization, the new mean-field Hamiltonian takes the form HMF =∑
uAu +

∑
uBuxu, where Au and Bu are functions of s. Hence, the sum over x

(ie “configurations”) in the fidelity can now be carried out with ease,

FMF = 1
2N

∑
x

∏
u∈V

e−βAue−βBxu =
∏
u∈V

e−βAue−βBu/2
(

cosh βBu2

)
, (4.57)

and the decay rate becomes βfMF, with

fMF = 1
N

∑
u∈V

Au + 1
N

∑
u∈V

Bu
2 −

1
βN

∑
u∈V

log cosh βBu2 . (4.58)
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The value of s (the magnetization) is found by adding an artificial linear term to the
Hamiltonian (playing the role of an external magnetic field), changing Bu → Bu+ξ,
and requiring consistency in the definition

s = 〈xu〉 = ∂fMF

∂ξ

∣∣∣∣∣
ξ→0

.

One is hence left with the trascendental equation for s,

s = 1
2 −

1
2N

∑
u

tanh βBu2 . (4.59)

Its solution s∗ can be substituted back in the expression for fMF (Eq. 4.58) to
obtain the desired result. In the cases of interest here, Bu is some polynomial
which remains bounded for all values of s ∈ [0, 1]. Hence, to leading order in p we
can approximate tanh βBu

2 ≈ pBu
2 , arriving at

s ≈ 1
2 −

1
2 pBu|s=1/2 (4.60)

for small enough p.

4.6 Distribution of a closed linear cluster
We first study the case of a one-dimensional network, in which a linear cluster
state is created. This network is remarkable because we can compute the exact
fidelity for any cluster size. In this case, we will keep error parameters p1 and p2
independent and study which is their effect in the different protocols. Moreover,
we will first consider an ideal situation where all the purified graphs are perfect,
and later turn to the noisy purification scenario.

For symmetry, we consider a closed linear cluster state, where all nodes have
degree 2. The order of the cphases in the creation of the local graph in protocols
Bipartite A and B, and the size of subgraphs in protocol Subgraphs, gives different
results for the fidelity. For simplicity, in Bipartite A and B, we consider cphases
applied to successive nodes. Except for the noise of the first gate (which affects only
two nodes) and of the last one (which affects four nodes), all the gates contribute
to the noise of three nodes. Each of the correlators is thus

〈Kx〉 '
∏
u∈V

(1− p1)xu(1− p1)xu+xu−1⊕xu+1(1− p2)2θ(xu−1,xu,xu+1)

〈
(Kgu

ua )xu−1⊕xu+1(Kgu
ub

)xu
〉

(4.61)

for the Bipartite A protocol and

〈Kx〉 '
∏
u∈V

(1−p1)xu(1−p2)θ(xu−1,xu,xu+1,xu+2)
〈

(Kgu
u )xu(Kgu

ub
)xu−1⊕xu+1

〉
(4.62)
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S1

S2

Figure 4.5. Subgraph protocol in a linear cluster. Top: S1, using subgraphs of degree 1.
Bottom: S2, using subgraphs of degree 2.

for the Bipartite B protocol. Recall that the correlator of the purified subgraphs
is given in Eq. 4.36.

The performance of the subgraph protocol, on the other hand, depends on
the choice of size of the subgraphs. There are two extreme strategies, depicted
in Figure 4.5: create subgraphs of degree 1, and connect them successively (S1),
or create subgraphs of degree 2 every second node, and connect them at their
common neighbor (S2). One could also adopt an intermediate strategy, in which
the degree of each GHZ is selected at random, resulting in a mix of subgraphs of
degree 1 and 2 —its performance, which will not be reported here, falls in between
the two extreme strategies. In the first case (S1), Eq. 4.49 reads

〈Kx〉 =
∏
u∈V

(1− p2)θ(xu,xu+1,xu+2)(1− p1)xu⊕xu+1
〈

(Kgu
u )xu(Kgu

uu+1)xu⊕xu+1
〉
,

(4.63)
while in the second (S2) it is

〈Kx〉 =
∏

u∈Veven

(1− p2)θ(xu,xu+1,xu+2)(1− p1)xu+1⊕xu+2

〈
(Kgu

u )xu(Kgu
uu−1)xu⊕xu−1(Kgu

uu+1)xu+1
〉
. (4.64)

Note that in the latter the product is over u = 2, 4, · · · ∈ Veven.

4.6.1 Exact solution via generating functions of the domains
Let us now define a domain of x = (x1x2 . . . xN ) as a sequence (xuxu+1 . . . xu+l)
where all xv, for v = u, . . . , u + l, have the same value (either 0 or 1), and where
xu−1 and xu+l+1 have a different value. The noise functions in the exponents of
correlators 〈Kx〉 depend on certain parameters of the domains of x. Hence, one
can express 〈Kx〉 as a function of these parameters, and reduce the complexity of
the sum of the fidelity in Eq. 4.15.

Let us take Eq. 4.63 as an example. We first define n as total number of ones
in the sequence x, n = |x|; c1 as the number of domains of only one zero; and c2∗

as the number of domains with two or more zeros. The function θ(xu, xu+1, xu+2)
that accompanies the term with p2 is equal to 1 in all the red edges of Figure 4.6a.
That is, the domain of ones depicted in the Figure contributes to the number of
(1−p2) noises with its size plus two. Note, however, that if the x in gray is actually
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x = ?

(a)
x =

(b)

Figure 4.6. Schematic representation of the vector x and the noise effect on 〈Kx〉 of
Eq. 4.63. Dots are components x of the vector: black if x = 1 and white
if x = 0. Lines correspond to edges between the qubits associated to every x.
(a) Red lines mark edges that are affected by noise 1 − p2. The line with a
question mark is affected by noise, but should not be counted if the gray x is
actually equal to 1. (b) Same, with noise 1− p1.

equal to 1 (ie the domain of ones is preceded by a domain of only a 0), the edge
with the question mark should not be counted, as it will be included in that other
domain. Summing over all domains, there are n + c1 + 2c2∗ terms of the noise
(1 − p2). The function xu ⊕ xu+1 that accompanies the term with p1 is equal to
1 only in the domain walls, as shown in Figure 4.6b. Hence, there are 2(c1 + c2∗)
terms of the noise (1−p1). The terms

〈
(Kgu

u )xu(Kgu
uu+1)xu⊕xu+1

〉
behave similarly.

In all, Eq. 4.63 can be expressed in terms of the domain parameters of x as

〈Kx〉 = (1− p2)c1+2c2∗+n(1− p1)2(c1+c2∗ )〈
Kgu
uv

〉c1+c2∗ 〈Kgu
u 〉

n−c1−c2∗
〈
Kgu
u K

gu
uv

〉c1+c2∗ . (4.65)

Using Eq. 4.15, the fidelity is then

FN = 1
2N

∑
c1,c2∗ ,n

g(c1, c2∗ , n,N) 〈Kx(c1, c2∗ , n)〉 , (4.66)

where g(c1, c2∗ , n,N) is the number of 〈Kx(c1, c2∗ , n)〉 elements with these param-
eters in a graph of N vertices. This sum can be computed exactly by turning to
generating functions. The function generating g(c1, c2∗ , n,N) is

G(x, y1, y2, z) =
∑

c1,c2∗ ,n,N

g(c1, c2∗ , n,N)xnyc1
1 y

c2∗
2 zN . (4.67)

The fidelity for a state of size N corresponds to the N -th term of G,

F = 1
2N

1
N !∂

N
z G(x, y1, y2, z), (4.68)

evaluated at some specific values of x, y1, y2, and z = 1 according to Eq. 4.65.
The factorization of 〈Kx〉 for Subgraphs S2 and Bipartite protocols depend on
slightly different parameters. We derive them in the following four subsections. In
all cases, errors from cphases and measurements are tracked by error parameters
p2 and p1, while errors in the purification step enters in the correlators 〈K〉. For
simplicity, we will consider the first order approximation of these purification errors
(tracked by error parameter p), from which the perfect purification case can be
obtained setting p = 0.
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Subgraphs S1: g(n, c1, c2∗ , N)

As we already introduced, in a chain of N nodes, let n be the total number of ones,
c1 the number of domains of ones preceded by a domain of only a zero, and c2∗ the
number of domains of ones preceded by a domain of at least two zeros (c1 + c2∗ is
the total number of domains of ones). Recall Eq. 4.65, which gives the correlator
of the protocol Subgraph S1 in terms of n, c1 and c2∗ . Then, g(n, c1, c2∗ , N) is
the number of different configurations of that chain with given parameters, and
G(x, y1, y2, z) its generating function, as defined in Eq. 4.67. Each variable x, y1,
y2, and z “counts” the number of ones, domains of one zero, domains of two or
more zeros and the total size, respectively.

The function G can be found by joining simpler distributions. We can think
of the linear chain as a construction of domains of zeros and ones joined together.
Consider the set of domains of zeros, {0, 00, 000, . . . }, each domain of a given size
appearing only once. The number of domains of size N in this set is dN = 1, which
is generated by

D(z) =
∑
N≥1

dNz
N = z

1− z . (4.69)

We can differentiate between the set of domains of only a zero, {0}, and that of two
or more zeros, {00, 000, . . . }. In this case, the generating functions are respectively
z and D(z)− z. The set of domains of ones, {1, 11, 111, . . . }, is generated by the
same function, but here each element contributes to the total size of the chain and
to the number of ones. Its generating function is thus D(xz).

The function generating the set of pairs of domains, the first of zeros and the
second of ones, is

P ≡ P (x, y1, y2, z) = {y1z + y2 [D(z)− z]}︸ ︷︷ ︸
zeros

D(xz)︸ ︷︷ ︸
ones

. (4.70)

To clarify this expression let us recall that y1 keeps track or “counts” the number
of domains of a single zero, y2 the number of domains of more than one zero, x
the number of ones and z the total size of the chain. And again, the coefficients
in the power expansion of P (x, y1, y2, z) are the number of configurations of a pair
of domains with the specified parameters (by different variables), starting with
a domain of zeroes followed by a domain of ones. Now, the generating function
corresponding to a chain formed by a sequence of such pairs (including no pair at
all) is

1 + P + P 2 + · · · = 1
1− P = 1 + {y1z + y2 [D(z)− z]} D(xz)

1− P . (4.71)

Here, the first element (1) counts the case where there are no pairs at all, and the
second, P/(1−P ), to that where there is at least one pair. Now, there are several
ways we can complete the sequence of domain pairs to construct a closed ring. We
can close the ring as it is (a), we can add a possible domain of zeros at the end (b),
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a possible domain of ones at the beginning (c), or both (d). The final generating
function is then

G =
{

1 + [y1z + y2 (D(z)− z)] D(xz)
1− P

} [ (a)︷︸︸︷
1 +

(c)︷ ︸︸ ︷
D(xz) +

(d)︷︸︸︷
P
]

+
[
1 + y2D(z)D(xz) 1

1− P

]
D(z)︸ ︷︷ ︸

(b)

. (4.72)

Note that when we added a domain of zeros (the term b), we changed the variable
y1 to y2, to take into account that the domain of zeros is now of size greater than
one (because we are considering a closed linear chain). Simplifying, we obtain

G = 1− xz2(1− y1 + 2(y1 − y2)z)
1− (1 + x)z + x(1− y1)z2 + x(y1 − y2)z3 . (4.73)

The fidelity of a linear cluster of size N is thus given by Eq. 4.68 using

x = (1− p2) 〈Kgu
u 〉 , (4.74a)

y1 = (1− p2)(1− p1)2 〈Kgu
uv

〉
〈Kgu

u 〉
−1 〈Kgu

u K
gu
uv

〉
, (4.74b)

y2 = (1− p2)2(1− p1)2 〈Kgu
uv

〉
〈Kgu

u 〉
−1 〈Kgu

u K
gu
uv

〉
, (4.74c)

and z = 0. Setting all 〈· · · 〉 = 1, we have the perfect purification case.

Bipartite B: g(n, c1, c2, c3∗ , N)

In Bipartite B protocol, the correlator depends on similar parameters. For sim-
plicity, and since later we will use the first order approximation of Eq. 4.36, here
we have to differentiate between the number of domains of zeros with one element
(c1), two elements (c2) and three or more elements (c3∗):

〈Kx〉 = (1− p1)n(1− p2)c1+2c2+3c3∗+n(1− 2p)n(1− p)2c2+2c3∗ . (4.75)

This can be achieved by a small modification of the previous generating function.
Now,

P ≡ P (x, y1, y2, y3, z) =
{
y1z + y2z

2 + y3
[
D(z)− z − z2

]}
D(xz), (4.76)

and

G = (1 + xz2(−1 + y1 − 2y1z + 2y2z + 3(−y2 + y3)z2))
(1 + z(−1 + x(−1 + z(1 + y1(−1 + z) + z(y2(−1 + z)− y3z)))))

. (4.77)
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Bipartite A: g(n, c1, c2∗ , c̄2∗ , N)

In Bipartite A protocol, we also need to count the number c̄2∗ of domains of two
or more ones. The correlator in this case reads

〈Kx〉 = (1−p1)2n+2c2∗+2c̄2∗ (1−p2)2c1+4c2∗+2n(1−2p)2c2∗+2c̄2∗ (1−p)n−2c̄2∗ . (4.78)

We count c̄2∗ using variable w2, and differentiating between the sets {1} and
{11, 111, . . . }, which are generated by xz and D(xz) − xz, respectively. The ex-
tended function generating the set of pairs of domains is now

P ≡ P (x, y1, y2, w2, z) = {y1z + y2 [D(z)− z]} {xz + w2 [D(xz)− xz]} . (4.79)

Proceeding as in the previous case, we obtain

G = 1 + xz2(−1 + y1 − 2y1z + 2y2z) + (−1 + w2)x2z3(y1(2− 3z) + 3y2z)
1 + z(−1 + x(−1 + z(1 + (1 + (−1 + w2)xz)(y1(−1 + z)− y2z))))

.

(4.80)

Subgraphs S2: g(n01, n10, n11, cl, cr, N)

In the Subgraphs S2 protocol, the sum is performed over even nodes. In this
case, it is convenient to express x as a sequence of elements 00, 01, 10 and 11
(the first digit corresponding to an odd node, and the second to an even node).
Each 01, 10 and 11 contribute to one cphase noise, as well as each domain of 00
which is preceded by a 01 or a 11. Moreover, each 01 and 10 contribute to one
Y measurement noise. Finally, each 01 and 11 contribute to a 1− 3p noise of the
purified subgraph, each 10 to a 1− p and each domain of 00 followed by a 10 or a
11 also to a 1− p. Thus, we need the number of configurations with n01, n10, and
n11 number of 01, 10 and 11 elements, and cl and cr domains of 00 preceded by
01 or 11 and followed by 10 or 11, respectively. The correlator is

〈Kx〉 = (1− p2)n01+n10+n11+cl(1− p1)n01+n10(1− 3p)n01+n11(1− p)n10+cr . (4.81)

Now, each element contributes with z2 to the size of the chain. The domains
{00, 00 00, . . . } are generated by z2

1−z2 . A domain made of elements 01, 10 and 11
of any size (including 0) is generated by

1
1− (x01 + x10 + x11)z2 , (4.82)

and one which ends (or begins) with, say, element 01 (and thus is of size at least
2) is generated by

1
1− (x01 + x10 + x11)z2x01z

2. (4.83)
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Proceeding as in the previous cases, the generating function is

G =
[
1 + (x01 + x10 + x11)z2

1− (x01 + x10 + x11)z2 + z2

1− z2 +G

]
1

1− P , (4.84)

where P is equal to{
(x01yl + x10yr + x11ylyr)z2

+ 1
1− (x01 + x10 + x11)z2 z

4 [(x01 + x11)yl + x10] [(x10 + x11)yr + x01]
}

z2

1− z2 .

(4.85)

Comparison of the fidelity

We will first consider the ideal case of perfect purification, and later tackle the
noisy case. In the ideal scenario, we can substitute all subgraph correlators by
1 and Eq. 4.68 gives the exact fidelity for all values of p1 and p2 (here taken
to be independent parameters). The fidelities of the four protocols are plotted in
Figure 4.7, the best protocol being S2 (d). The fidelity decays at first exponentially
in the error probabilities but as probability of error increases the decay becomes
slower and the fidelity reaches a non-zero minimum value. In general, the fidelity is
more sensible to noise p2, as this is the one corresponding to cphases, which affects
more qubits. The dependence on p1 varies a lot from one protocol to another. This
is reflected in the asymptotic minimum value: for p2 = 0 and p1 = 1 (ie perfect
two-qubit gates, but maximally noisy single-qubit measurements), the fidelity in
the S1 and S2 protocols is higher than the minimum value 2−N . At this regime all
terms in the sums Eq. 4.63 and 4.64 vanish except for those where the exponent
of (1 − p1)f(x) is zero (ie the corresponding Kx is not affected by the noise). Of
course, this is true in all protocols for the identity, x = 0, but in the S1 it is also
true for x = 1, so the minimum fidelity is 2−N+1. In protocol S2 the effect is even
bigger, as the product is over Veven and hence any x where pairs x2n+1⊕x2n+2 = 0
for n = 0, . . . , N/2− 1 translates in a Kx that is not affected by this noise. In this
case, the minimum fidelity is 2−N/2.

To further compare the four protocols, in Figure 4.8 we plot the corresponding
decay exponent fN for p = p1 = p2. As expected, the behavior of Bipartite A
protocol is the most sensible to noise, because it involves more operations and
measurements. One can also observe that S1 and Bipartite B have a similar
decay rate. Note that, except for the use of a central node in Bipartite B, while
S1 protocol is distributed, both use bipartite resources, and in particular both
implement the same number of cphases and measurements. For this reason, noise
comes in a very similar way, the main difference being that cphases in Bipartite
B affect a larger number of qubits, and therefore the associated θ function has a
larger support in x. This holds even if one considers non-perfect purification, as
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(a) Bipartite A.
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(b) Bipartite B.
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(c) Subgraphs S1.
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(d) Subgraphs S2.

Figure 4.7. Fidelity of a linear cluster of size N = 10 created by the (a) Bipartite A, (b)
Bipartite B, (c) Subgraph S1 and (d) Subgraphs S2 protocols, as a function of
noise parameters p1 and p2. Lines correspond to fidelities 2−1, 2−2, . . . , 2−9,
starting from the bottom left corner.
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Figure 4.8. Rescaled decay rate fN of a closed linear cluster of N = 10 nodes with perfect
purification. Blue circles: Bipartite A; red squares: Bipartite B; yellow dia-
monds: Subgraphs S1; and green triangles: Subgraphs S2. Dots correspond
to the mean-field approximation (see Section 4.6.2), lines to the exact result
using generating functions.

both protocols rely on bipartite purification. On the other hand, S2 performs the
merging of subgraphs at every second node, so it has much less sources of noise.
In fact, for p→ 0 its decay rate is exactly half the one of S1.

4.6.2 Comparison with the mean-field approximation
To give insight into the methods that are available for general networks, we show
here how the common mean-field approximation can be used. As we introduced
in Section 4.5, 〈Kx〉 ∼ exp[−βH(x)]. For the Subgraph S1 protocol, H(x) =∑
u∈V hu(x), with

hu(x) = θ(xu, xu+1, xu+2) + xu ⊕ xu+1. (4.86)

Recall that we are still considering perfect purification. Substituting xu → s+ δu
and keeping only linear terms in δu, this takes the form of hMF

u (x) = au + buxu +
cuxu+1 + duxu+2, with

au = (5− 2s)s2 (4.87a)
bu = 2− 4s+ s2 (4.87b)
cu = 2− 4s+ s2 (4.87c)
du = (1− s)2. (4.87d)

All qubits u are equivalent, so the coefficients a, b, c, d are the same for every node
and the total Hamiltonian is HMF = AN+B

∑
u xu, with A = a and B = b+c+d.
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Hence, the fidelity in the mean-field approximation is

FMF
N = e−βANe−βBN/2

(
cosh βB2

)N
, (4.88)

and the decay rate
fMF = A+ B

2 −
1
β

log cosh βB2 . (4.89)

The same approximation can be made for the other protocols. The local Hamil-
tonian of Subgraphs S2 is

hu(x) = θ(xu, xu+1, xu+2) + xu+1 ⊕ xu+2. (4.90)

Note that, in this case, the total Hamiltonian is the sum for u even. In the case
of Bipartite A and B, the local Hamiltonians are

hu(x) = 2xu + xu−1 ⊕ xu+1 + 2θ(xu−1, xu, xu+1) (4.91)

and

hu(x) = xu + θ(xu−1, xu, xu+1, xu+2), (4.92)

respectively. The mean-field results are shown in Figure 4.8 together with the
exact result. The agreement is remarkably good, specially considering that this is
a one-dimensional network configuration. We observe that the decay rate has a
linear dependence in p but soon higher order (non-linear) terms start to kick in.
Here, we have studied and plotted the solution for a wide range of p. This has been
done for completeness and to check the validity of the mean-field approximation,
but recall that the aim in this Chapter is solely to compute the decay rate to
leading order in p. The reason is that in realistic scenarios p will be strongly
limited by threshold values required for subgraph (or bipartite) purification.

We now consider the realistic scenario following the same procedure as before
but taking into account the corrections due the noisy purified subgraphs. This
can be done by approximating the correlators by their linear correction around
unity (ie Eq. 4.36). Consequently, an additional term (Eq. 4.51) must be added
to the local Hamiltonians (Eqs. 4.86, 4.90, 4.91, and 4.92) for each of the different
protocols. It is important to bear in mind that all subsequent results have to be
taken consistently up to leading order in p. This leading order is the one that
enters in the features that we seek: the linear dependence of the fidelity decay rate
around a small values p ∼ 0 (and for arbitrarily large N). From Eqs. 4.58 and 4.59
it is immediate to see that at this order the whole contribution to the decay rate
is given by the first two terms in Eq. 4.58 evaluated at s = 1/2, ie

fN = A+ B

2

∣∣∣∣
s=1/2

= 1
N2N

∑
x

H(x). (4.93)
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Figure 4.9. Fidelity decay rate pfN of a closed linear cluster ofN = 100 nodes. From upper
to lower lines: Bipartite A (blue, circles), Bipartite B (red, squares), Subgraph
S1 (yellow, diamonds) and Subgraph S2 (green, triangles). Solid lines corre-
spond to the generating function result, using the first order approximation of
the purification scheme of Eq. 4.36. Dashed lines are the first-order result of
Eq. 4.93. Dots correspond to the mean-field approximation.

The second equality is straightforward to get from the definitions of A and B, and
it states that in this regime (low p) the decay rate is dominated by the exponents
of the typical sequences x. The expected value of H(x) (over sequences x) can
be easily carried out since xu are independent variables of mean 1/2 and it leads
to fidelities that decay as exp(−NpfN ) with fN equal to 9/2 = 4.5, 43/16 ≈ 2.7,
21/8 ≈ 2.6, and 13/8 ≈ 1.6 for the Bipartite A and B and Subgraphs S1 and S2,
respectively.

These coincide with the decay rates obtained by the generating function method
in the same limit, where in Eqs. 4.74a to 4.74c we substitute 〈Kgu

u 〉 =
〈
Kgu
u K

gu
uv

〉
=

1 − 2p and
〈
Kgu
uv

〉c1+c2∗ = 1 − p. The results (see Figure 4.9) show that the
subgraph protocols provide output fidelities comparable, if not better, than those
given by the protocols based on channel purification. This is remarkable keeping
in mind that purifying channels is much more demanding in terms of resources
and efficiency.

As we mentioned at the beginning of the Section, the order of the cphases
in the Bipartite protocols can give different results, but the decay rates do not
change much. For example, if the chpases are first applied to every second edge,
and then to the remaining edges, the decay rate is 143/32 ≈ 4.5 for Bipartite A,
while it does not change for Bipartite B.
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4.7 Distribution of graph states in complex networks
In this section we study the behavior of the graph-growth protocols in complex
networks. Recall from Section 2.2.1 that complex networks are characterized by
statistical properties, and can be modeled as an ensemble of graphs G, with a
probability P (G) assigned to every graph G in the ensemble. A property O of a
complex network is defined as its average over the ensemble, O =

∑
G∈G P (G)OG.

(Note that in the following the overline stands for the ensemble average, except
when specifically mentioned otherwise). Recall also that some of these properties
are self-averaging, meaning that for large systems (in the limit N →∞) a property
of a given graph realization G is the same as the average over different realizations
of G ∈ G. As we mentioned in Section 4.5, the free energy is typically self-
averaging, and is the one we use here as a figure of merit.

We consider random networks with arbitrary (uncorrelated) degree distribution
pk, reproduced by the configuration model. Here, we will use the basic generating
functions of the degree, gp(z), and the excess degree distributions, gr(z), from Sec-
tion 2.3.2. The edges in the network are undirected, but the creation of the graph
state via the Subgraph protocol is “directed-like”, as each node can have incoming
and outgoing neighbors. Thus, we also consider the degree distribution pi,j , where
i is the in-degree and j the out-degree. This distribution is very important here, as
it defines the implementation of the protocol. For example, in the linear cluster, S1
was defined by p1,1 = 1 for all nodes, and S2 by p0,2 = 1 and p2,0 = 1 at even and
odd nodes, respectively. The distribution pi,j is constrained by

∑
i,j(j− i)pi,j = 0,

which means that 〈i〉 = 〈j〉 = 〈k〉 /2, but note that, in general, it can be correlated
(pi,j 6= pipj). The function that generates pi,j is gp(x, y) =

∑
i,j pi,jx

iyj .
In the case of complex networks, we are interested in the average fN =∑

G∈G P (G)fGN over the ensemble. We expect that, for large N , fN goes to f
due to self-averaging. In order to average fN , we have to compute

fN = − 1
βN

∑
G∈G

P (G) log 1
2N

∑
x

e−βHG(x), (4.94)

which corresponds to a quenched average, where the disorder corresponding to
the network topology, given by P (G), is frozen with respect to that of the cor-
relation operator index, x. These type of averages appear, for example, in spin
glasses (Mézard et al., 1987). Computing this quantity is in general an extremely
challenging problem, specially in our case where we have structured disorder and
k-body interaction between the spins. Nevertheless, we are interested in the par-
ticular regime of high temperatures (low p) far away from critical phenomena, long
range correlations, and other difficulties that appear at low temperatures. In this
regime we can directly use Eq. 4.93:

fN = 1
N

∑
G∈G

P (G) 1
2N

∑
x

HG(x) = 1
N

1
2N

∑
x

HG(x). (4.95)
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The Hamiltonians for the Bipartite protocols are of the form

HG(x) =
∑
u∈V

hu(x) +
∑̃

(u,v)∈E
hu,v(x). (4.96)

In the Bipartite A, the local Hamiltonians are

hu(x) = xu +
⊕
v∈Nu

xv · xu + 2
⊕
v∈Nu

xv + θ(xu,xNu) + xu +
⊕
v∈Nu

xv (4.97a)

and

hu,v(x) = θ(xu, xv, xÑu , xÑv), (4.97b)

while in the Bipartite B,

hu(x) = xu
⊕
v∈Nu

xv + 2xu + xu (4.98a)

and

hu,v(x) = θ

xu, xv, ⊕
w∈Nu

xw,
⊕
w∈Nv

xw, xÑu , xÑv

 . (4.98b)

(Here, the overline denotes the bit-complement.) As before, the tilde over the sum
in Eq. 4.96 and Ñ reminds us that the cphases are performed in a particular
order in the local graph. We can substitute this sum by the expected effect of an
edge, which depends on the number of edges already connected to nodes u and v.
This number is nu + nv with probability

1
2ku+kv

(
ku
nu

)(
kv
nv

)
. (4.99)

Here, ku and kv are the excess degrees of the vertices in edge (u, v), so the average
of the network ensemble has to be performed using probabilities rku and rkv :

hu,v(x) = 1
2N

∑
x

∑
kukv

rkurkvhu,v(x). (4.100)

In the Bipartite A, the average effect of each of these edges is 1− 1
4 [gr(3/4)]2. In

the Bipartite B, it is 1− 1
16 [gr(1/2) + gr(3/4)]2. The terms in hu(x), on the other

hand, depend directly on the degree, and the average is performed over pk:

hu(x) = 1
2N

∑
x

∑
k

pkhu(x). (4.101)
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Considering all these terms, and that the summation over V contains N elements,
while that over E contains M = 〈k〉N/2, the decay rates are

fN = 15
4 −

5
4gp(0)− 1

2gp(1/2) + 〈k〉2

(
1− 1

4 [gr(3/4)]2
)

(4.102)

for Bipartite A and

fN = 7
4 −

1
4gp(0) + 〈k〉2

(
1− 1

16 [gr(3/4) + gr(1/4)]2
)
, (4.103)

for Bipartite B.
In the Subgraph protocol, where HG(x) =

∑
u∈V hu(x), the local Hamiltonian

is

hu(x) =
[
xu

⌈∑
w∈N out

u
xw

2

⌉
+ xu(j(u) + 1)

]
(1− δ0,j(u)) + xuδ0,i(u)δ0,j(u)

+
∑

va∈N ′u

[
θ(xu,xN out

u
, xv1 , . . . , xva) + xu ⊕ xva

]
. (4.104)

Here N ′u is defined as in Eq. 4.49. That is, as the standard neighborhood if u
has at least an outgoing edge (j(u) > 0), or as this neighborhood minus the first
incoming neighbor if j(u) = 0. In this case, to average the Hamiltonian we have to
take into account the directed degree probability, h(x) =

∑
ij pijh(x), giving

fN = 5
8 + 17 〈k〉

16 + 7
4gp(0, 0)− 15

8 gp(1, 0)− 1
2 [gp(1, 1/2)− gp(1/2, 1/2)] . (4.105)

These results are valid for any network with uncorrelated degree distribution pk. To
compare the behavior of the three protocols we consider the Erdős-Rényi model
(Gilbert, 1959; Erdős and Rényi, 1959, 1960), which is the maximally random
graph under the only constrain that the mean degree 〈k〉 = c is fixed. Recall that
the degrees in this model follow a Poisson distribution, so gp(z) = gr(z) = ec(z−1),
and for c > 1 there is a giant connected component of size comparable to the size
of the network. The degree distribution pk is fixed by the network model, but in
the Subgraph protocol one can choose between different strategies and thereby fix
the distribution pi,j (of course, as long as

∑
i,j pi,jδi+j,k = pk). For simplicity, here

we consider that the direction of each edge is selected at random,

pi,j = pi+j
2i+j

(
i+ j

i

)
, (4.106)

and hence gp(x, y) = ec(
x+y

2 −1). Figure 4.10 plots pfN for the three protocols,
showing that the best protocol depends on the mean degree of the network. It
also shows an average over 10 random realizations of an Erdős-Rényi graph of
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Figure 4.10. Fidelity decay rate pfN in an Erdős-Rényi network of mean degree (a) c = 2
and (b) 4. Bipartite A (blue, circles), Bipartite B (red, squares), and Sub-
graphs (yellow, diamonds). Points are the average over 10 random realiza-
tions of networks with N = 100, randomly sampling 1 000 configurations of
x. Dashed lines are the results at first order in p (Eqs. 4.102, 4.103, and
4.104).

N = 100, approximating the fidelity by the average of a random sample of 1 000
configurations of x, F ∼ 1

1000
∑
xsample

〈
Kxsample

〉
. This approximation is valid

in the low p regime, where the fidelity is dominated by the typical values of x.
We observe that, in the Erdős-Rényi, the Subgraph protocol with random edge
direction give a better (lower) decay rate fN for c < 2.8, while above that the
Bipartite B beats it. This stronger dependence of the Subgraph protocol on the
mean degree of the network—compare the term in 〈k〉 in Eq. 4.104 versus those in
Eq. 4.102 and 4.103, which however have a bigger constant term—is in part due to
the higher number of noise sources, which depends on the number of edges. Indeed,
in the Bipartite protocols only the initial cphases depend on the number of edges
of the graph, while in the Subgraph protocol every merging of two subgraphs
includes a cphase and a measurement. These mergings depend on the number of
incoming edges, which could be lowered by considering a strategy different from
the simpler one considered here where the direction of edges is selected at random.
Instead, one could favor, for example, that the leaves of the network have an
incoming edge with higher probability than an outgoing edge. Here it is important
that we are comparing protocols which have drastically different requirements in
terms of resources, so a slight benefit of the bipartite protocols in terms of fidelity
does not rule out the use of subgraph protocols.



CHAPTER 5

Conclusions

In this thesis, we have considered distribution of bipartite and multipartite entan-
glement in large systems with a complex structure. Quantum complex networks
offer a powerful framework for quantum communication and distributed tasks.
Regardless of their intricate structure, complex networks can be studied by their
statistical properties, which allows to analytically compute some interesting prop-
erties and to deal with them without knowing their exact structure.

In the bipartite scenario, long-distance entanglement can be established ex-
ploiting the emergence of a giant connected component in a percolation-type pro-
cess. The percolation threshold, which amounts to the minimum level of entangle-
ment needed to entangle two distant nodes with finite probability, and the size of
the giant connected component, which determines this probability, have a strong
dependence on the structure of the network. We have studied a local quantum
preprocessing of the network that can change the structure of the network and
thereby lower the percolation threshold, enabling quantum communication with
less entanglement resources. The quantum preprocessing we have proposed is local
in two senses. First, quantum operations are done always on qubits that belong to
the same node. Second, the decision whether or not to perform such operation de-
pends on the local structure of the network (the degree of the target node and the
status of its neighbors) and on information about general statistical properties of
the network —it is not required to posses the information about the precise wiring
of all nodes, which can be overwhelmingly large, on many occasions unknown, and
even changing in time. We provided analytical results for the relevant network
properties with and without quantum preprocessing for arbitrary networks with
uncorrelated degree distribution, showing that the preprocessing can substantially
improve communication over such networks. We have also studied numerically the
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Watts-Strogatz small world model and a real world network, and have found a
similar behavior.

We also considered a more realistic scenario with the presence of noise in the
connections. We have shown that in complex networks a direct implementation
of the entanglement percolation strategy, without quantum preprocessing, allows
for faithful quantum communication (above a fixed fidelity threshold) between a
large number of nodes. The noise severely limits the number of steps or connec-
tions through which information is transmitted. However, in complex networks,
one can reach a sizable amount of nodes with a moderately low number of steps.
If the fidelity threshold allows for a path length slightly higher than the average
path length, all nodes in the giant component become faithfully connected. The
path length distribution is peaked at low values (scaling as logN in complex net-
works versus N1/d in d-dimensional lattices), and has finite width (constant in N
versus N1/d). This shows that in complex networks a finite fraction of faithfully
connected nodes appears for much smaller limiting path lengths and reaches the
giant component size abruptly. Hence, here the advantage of complex networks is
twofold: the average path length which marks the transition scales logarithmically
with the network size, and the additional steps needed to reach the non-limited sce-
nario is finite. This means that a small increase in the fidelity of the connections,
for example via purification, can lead to an abrupt recovery of the non-limited
scenario. A possible way to obtain this effect could be to use secondary paths to
purify the entanglement in the shortest path connecting the two nodes that one
wants to entangle (see Lapeyre Jr. et al., 2012).

Our results also contribute to the field of classical complex networks. We have
given analytical results for the gain in the percolation thresholds and the size
of the giant component for uncorrelated complex networks that undergo a set of
local inversions (ie a transformation that produces the complement of the induced
subgraph of the target node). These transformations are also related to the local
complementation that leaves graph states with an equivalent entanglement. The
problem at hand of studying how critical properties of a network can be drastically
modified by a given set of network transformations might be of general interest
to other disciplines in the field. In particular, the enhancement or delay of the
percolation threshold is related to explosive percolation, a new area of study in
complex networks that studies a first-order phase transition. Finally, we have
addressed the problem of limited-path percolation in uncorrelated and small world
complex networks, which can find various applications in a classical setting where
one needs to exclude, eg due to some finite resources, paths exceeding a certain
length.

In the multipartite scenario, we have focused on the creation and distribution
of graph states, which are an important class with many practical applications, in-
cluding measurement-based quantum computation. We consider a realistic model
with errors in the channels, operations and measurement. To overcome this noise,
we proposed a distributed protocol that again does not depend on information
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about the global structure of the network, but only on the neighborhood of nodes.
This protocol is thus specially motivated to be implementable in complex networks.
Moreover, it uses multipartite purification of small subgraphs, which makes it ef-
ficient with respect to the network size. We compared it with two other protocols
that rely on bipartite purification between a central node, which has a global
overview of the network, and the rest of the nodes.

As a figure of merit, we used the fidelity of the generated graph state and
its decay rate as the size of the network increases. Using generating function
methods we have been able to compute exactly the fidelity for linear clusters of
arbitrary size, allowing for a direct comparison with the approximate methods we
develop. We have rephrased the problem of computing the effects of noise in the
operations in terms of the thermal properties of a classical spin system, with the
same interaction patterns as the underlying graph. Indeed, the fidelity itself can
be seen as the analog of the partition function of such system, while its decay rate
plays the role of the free energy. The well-known methods from statistical physics,
such as the mean-field approximation, can be used to study its behavior. We
have also studied the three protocols in networks with a complex structure, that
give rise to effective classical spin models with quenched disorder. Our results
show that the protocol using subgraph purification and merging is comparable,
and in some cases even better, than those which rely on bipartite states. This is
quite remarkable, as the latter rely on quantum repeaters and require much more
resources.

In the complex networks case, the multipartite protocol could be possibly en-
hanced by devising an optimized strategy via the directed degree distribution pi,j .
As an example, in networks with many nodes of degree 1, one should go for a
directed degree distribution in which those nodes are as much as possible the re-
ceivers of GHZ states, instead of the senders, so less connections would need to be
made. In other words, one should tend to p1,0 as high as possible (compared to
p0,1). Also, in nodes of too high degree, the protocol might fail due to the noise
threshold in the multipartite purification, which depends on the size of the GHZs
(and thus, on the degree of the network nodes). In this case, one could always
separate the node in two (or more) and treat them as independent nodes, each
creating and distributing a subgraph among a subset of the neighborhood. This
might prove useful in networks with a scale-free degree distribution, which have a
long tail and a high presence of hubs.

It remains an open question to relate the decay in fidelity with the actual
use one can make of graph states. Clearly, there is a regime where the fidelity
is exponentially small, but a finite decay rate still signatures valuable resources.
For example, N independent, almost perfect Bell pairs result in a graph state
with exponentially low fidelity; however this is clearly a very valuable resource.
Hence, the decay rate of the fidelity (or alternatively, a local noise equivalent that
one had to apply to each qubit of a perfect, large state to get the same fidelity)
provides a more informative measure. It is important to emphasize that for the
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three protocols, as well as for all the networks under study, we have not only
computed this decay rate, but also completely characterized the noise graph states
that emerge from the protocol. For a particular application, having full knowledge
of the generated graph gives probably a closer picture of the generated resource.

As a final consideration, the structure of the final graph state have also an
effect on the noise it accumulates and on the possible purification schemes that
one can apply to it. Using a given underlying network, one could in principle
generate distributed graph states with many different topologies. Here we have
focused on a distributed graph that mimicked the structure of the underlying
communication network, but of course one could generate other topologies. One
could also distribute different states, and create a large graph state with a structure
different from that of the network recalling that, once the graph is created, local
operations (Van den Nest et al., 2004; Joo and L Feder, 2011) might be used to
transform the graph state and reach the desired structure. Note that different
graph states might be locally equivalent under these types of transformations, but
the differences in their structure can translate into a different sensibility to noise
in their generation.

An open question is if states like this—with a complex structure—are use-
ful for some tasks, and in particular whether they are a universal resource for
measurement-based quantum computation or not. It is known, for example, that
a universal resource for measurement-based quantum computation must have un-
bounded entanglement width (Van den Nest et al., 2006), a measure connected to
the rank width of the graph (Oum and Seymour, 2006). In the Gilbert model, for
example, Lee et al. (2012) showed that in the regime p = c/N the rank width is less
or equal than 2 below the threshold (c < 1), and it scales at least as Nf(c) above
it. Thus, below the threshold the graph state is not a resource for measurement-
based quantum computation, but above it has unbounded rank width and it might
be useful. This is, however, only a necessary condition. For instance, it is known
that if the graph is fully connected it is locally equivalent to a giant GHZ (with
bounded rank width), and hence not useful as a resource. Investigating if a graph
above the threshold, but still in the sparse regime, is a resource is indeed an in-
teresting open question. Of course, one can also try to generate other states that
are useful for a specific task.

With this work, we would like to draw attention from quantum communication
and information processing on regular lattices to the more general and feature-full
complex networks. As we have seen, methods from the complex networks field
allow to compute interesting quantities requiring only statistical properties. Al-
though this might seem a limitation, it can in fact represent an advantage, as it
makes mathematically tractable some problems that are hard or impossible to solve
on lattices. Also, it provides a minimal description in scenarios where complete
knowledge of the system is not available or is hard to provide. On the other hand,
we have shown that new phenomena appear if networks and the operations one can
perform on them are governed by the laws of quantum mechanics. An example of
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that is also the new behavior found in the emergence of subgraphs in quantum ran-
dom networks (Perseguers et al., 2010b). Finally, a quantum information approach
could also be used to address classical problems, like detection of the community
structure of a network, which might be revealed using quantum processes, eg by
the evolution of a quantum walk (Tsomokos, 2011), and search algorithms (Paparo
and Martín-Delgado, 2012; Garnerone et al., 2012; Sánchez-Burillo et al., 2012).
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